Distributed Ray Tracing: Parallelizing graphical computation

Maxwell Bernstein
Tufts University

Arthur Berman
Tufts University

Abstract

We want to parallelize the ray tracing algorithm across
multiple machines instead of just multiple processes on
one machine. These machines and processes need to
communicate over a network.

1 Design

We have dubbed our distribution/concurrency model a
Worker/Collector Architecture. The Collector in this
model has knowedge of work to be done, and divides this
work into chunks to be put on a work queue, and con-
sumed by worker processes. The Woker processes con-
sume work from the work queue, and produce results.
Finally, the collector collects (consumes) these results,
and assembles them into a cohesive whole.

We chose this design because it offers high extensibil-
ity and keeps mutable resource sharing to a minimum.
We could extend this same architecture to many different
divide-and-conquer problems. Furthermore, at no point
in our model do the workers or collector have access to a
shared mutable state.

Our model is also the easiest to employ in a practical
manner. Based on our current archtecture, we could
create a wrapper for both Collectors and Workers, called
Manager. This manager could orchestrate multi-scene
rendering efforts, spin up remote workers, and more.

Thomas Colgrove
Tufts University

Kate Wasynczuk
Tufts University

Manager

Collector

Loc

Pixel Coords

This diagram shows two Workers and one Collector.
The Collector produces an image with an arbitrary width
and height. The Collector can be in one of two states: as-
signing work, and outputting image. When the Collector
is assigning work, it waits for messages from Workers,
then allocates work to each Worker that asks. The Col-
lector selects work based on the current front of a circu-
lar queue. Once work is complete (read: returned by a
Worker), it is removed from the queue.

Work consists of a named scene description file and a
set of pixels. Once every pixel in the image has been ren-
dered, the Collector transitions to outputtting an image.

When the Collector is outputting an image, the Collec-
tor writes a file to the filesystem containing the rendered
image.

There are two Workers connected to the server.
Worker A is looking for work. Worker B has received
work and is working. Worker A has sent a message to
the server requesting a set of pixels. When the server
responds, Worker A will transition to the working state.

Worker B, in the working state, is iterating through the
set of pixels in its packet of work. For each pixel, it uses a
traced ray to determine the correct color. Once all pixels
have been rendered, it returns the set of rendered colors



to the server and transitions to the look for work state.

2 Reflection on design

The two best design decisions we made work hand in
hand: the work queue, and the stateless message proto-
col.

The work queue allows for clients to fail for whatever
reason (network issues, segfaults, etc) and the image to
continue to be rendered successfully.

The stateless message protocol accomplishes the fol-
lowing:

e Limit number of open connections.

e Reduce complexity in both Worker and Collector
state machines.

e Limit technology requirements (i.e. no keep-alive
connections, long-polling, etc)

3 Analysis of outcome

We were able to achieve our minimum and maximum de-
liverables from the initial proposal and further. We can,
by means of a Python script, also create moving GIFs
of renders of scenes. See the example of snowman with
snow falling.

The math, while difficult, did not prove nearly as in-
tractable as we initially thought, even though we do
not have backgrounds in mathematics. Additionally, the
math required for ray tracing allows for easy frame split-
ting. We were not sure if this was possible.

4 Reflection on development plan

We operated in two-week sprints as pairs. Each pair fol-
lowed the COMP 40 pair-programming paradigm, with
two members of the group on one computer, with one
driving and the other providing continual feedback.
Throughout each sprint, each pair pushed the code to
a feature branch, and then pair reviewed the other pair’s
code. After pair review (and appropriate revisions), fea-
ture branches were merged into the development branch.

4.1 Sprints

(1) Thomas and Max: single-threaded ray tracer, Kate
and Arthur: scene description parser

(2) Thomas and Arthur: integrate ray tracer and scene
description parser, Kate and Max: networking stack,
message passing, and work queue

(3) Arthur and Max: integrate work queue and message
passing into ray tracer, Thomas and Kate: slide deck
and presentation materials

4.2 Reflection

For the most part, the pair-sprint format worked well. It
forced every member of the group to have a solid under-
standing of the code and the architecture. Additionally,
it ensured punctuality by way of peer pressure.

Occasionally, one team would require assistance from
another in order to finish a sprint.

4.3 Interface management

The weekly full-group meetings to decide interfaces
worked well. We found that in practice, a team would
make the call to change an interface in order to write bet-
ter code. This was not a problem.

S Bug report
5.1 JSON? What JSON?

Occasionally, the Worker would have trouble parsing
larger scene files sent by the Collector. JsonCpp would
complain about poorly formed documents, that it ex-
pected an open brace here, quote there, etc. Even after
very detailed manual inspections, the transmitted JSSON
appeared completely fine.

One time, however, we noticed a non-ASCII character
rendered as a question mark in the JSON output. This
kind of output only appears when the terminal can’t ren-
der the (presumably invalid) character. On larger JSON
files, these question mark characters appeared at very
regular intervals - about every 512 bytes, the amount we
recv () each call.

It turned out that the amount we recv () ’d completely
filled our buffer, leaving room for no NULL-terminator,
so we would read past the bounds of buffer whenever
we loaded JSON. If we recv () ’d one less character, the
problem disappeared.

5.2 SIGBUS...?

After debugging the JSON issue mentioned above, the
Worker could parse JSON, render pixels, and then send
to the Collector. However, the Collector would exit with
SIGBUS on images larger than roughly 200 by 300 pix-
els. When we ran the Collector under gdb and unrolled
the stack, there were nearly 500 stack frames of the same
function - read_from_sock.

Read_from_sock, given a client socket and string
buffer reference, will read until there is nothing more to



read, and append the buffer to the string all the while.
It was initially written recursively because it was the
cleanest way - however, it looked like on large mes-
sages (which could be up to five (5) megabytes) and
chunk sizes of 512 bytes, there would be a stack over-
flow that only got noticed when read_from_sock tried
to bzero () a variable.

Read_from_sock was rewritten as an iterative func-
tion, and order was restored.

5.3 JsonCpp keeps global state

We use JsonCpp as our JSON serialization and deseri-
alization library. This is for the most part an excellent
library, but when we started running into errors when ray
tracing with multiple Workers. We noticed that JsonCpp
would occasionally throw a runtime error about blowing
the stack. This error message only cropped up when us-
ing two or more Workers.

We decided to track down where this error message
came from, and found out that there was an artificial cap
on the recursion allowed in the JSON parser. Interest-
ingly enough, the recursion count was kept in a global
variable, allowing all instances of the Json: :Reader
class to increment it at the creation of each new stack
frame. Naturally, we “blew the stack™ early and often.

The fix (submitted as a pull request to the JsonCpp
project) is to localize the stackDepth variable to each
instance of the Json::Reader class by making it a
member variable. The problem disappears after patch-
ing the library.

The team submitted a pull request to the JsonCpp li-
brary with a fix for the issue.

5.4 Sockets randomly closing

Currently, Workers will fail to send () messages, exiting
the process with an error about using the wrong protocol
for that type of socket. After some preliminary internet
research, this error can occasionally appear when trying
to send() large messages. Our messages can be very
large, so we wrote some code to split the larger messages
into 512 byte chunks and send () those instead.

Instead of fixing the problem, the Workers then ex-
ited with SIGPIPE. At some point during the repeated
send ()s, the pipe was closing and Workers could no
longer write.

While researching the SIGPIPE errors after the pre-
sentation, we realized that a SIGPIPE indicates that
the connection is no longer open, and the socket is in-
valid. Perhaps it was not some bizarre system issue af-
ter all! After some investigation into the ‘TCPServer’
class, it became evident that the unforgiving timeout in
read_from_sock closed the connection too early. The

timeout was increased from 0.01 seconds to 1 second and
all was well.

6 Code overview

We have a significant number of modules, utility classes,
and some bundled requirements.

6.1 Collector

Collector is a networked producer of coordinate
ranges and consumer of pixels. It acts as a TCP server
and serves coordinates to Workers that request it. It also
fields requests from Workers submitting pixels.

6.2 Worker

Worker is a networked consumer of coordinate ranges
and producer of pixels. It acts as a TCP client and sends
pixels to Collectors.

6.3 WorkQueue

WorkQueue is a circular queue with constant-time insert,
remove, and lookup. It ensures that Collector pro-
cesses work with extreme fault tolerance and speed.

6.4 RayTracer

RayTracer is the class that controls all of the actual ren-
dering, PumImage manipulation, and file writing.

6.5 Parser

Parser is responsible for the management of scene de-
scription files. Our scene descriptions are stored in
JavaScript Object Notation (JSON), and Parser loads,
parses, and creates in-memory representations of the
scenes. RayTracer uses Parser.

6.6 SceneObject

SceneObject is the overarching virtual class in the
3D object class heirarchy. It contains traits such as
loc for location, material for material, and methods
such as get_location() and get_normal (). Sphere,
PointLight, and Box all inherit from this class.

6.7 Our File Format

In JSON, we represent our scene as two lists:
scene_objects and scene_lights. Scene_objects
contains objects representing figures in the scene, while
scene_lights describes the illuminations.



6.8 TCPServer

C++ does not have a built-in or easily bundled TCP
server implementation, so we wrote our own. It supports
only basic functions like start, serve_request, and
stop. It is created with a callback function of signature
string -> string that handles all requests.

6.9 TCPClient

C++ also does not have a built-in or easily bundled TCP
client implementation, so we wrote our own. It sup-
ports only basic functions like connect, send_data,
and receive.

6.10 PnmImage

PnmImage is responsible for the creation and writing
of collections of pixels to disk. RayTracer manages a
PnmImage, both alone and in Collector.

6.11 Miscelleaneous other

There are numerous other modules like vector3_t,
pixel_t,andmaterial_t, that are little more than their
types and are fairly self-explanatory. Upon request, fur-
ther information about any requested module can be pro-
duced.

6.12 The work of others

The contents of ./dist are the work of others, with some
small patches as described in our bug report.

7 Building and Running our Work

To build our project, run make worker collector.
This should produce two executables, worker and
collector.

To start a collector that will render “scene.json”
and place the result in “output.pnm,” run
./collector -s scene.json -o output.pnm

Use the -vpw <width> and -vph <height> options
to set the width and height. Use the -spl <splits>
option to set the number of columns to divide the image
into.

Once a collector is running, start a worker using
./worker. To connect to a remote collector, use
./worker -h <host> -p <port>.

8 Update from final design

In this section, we update the grading reader on the
project’s progress since the last submitted document.
Sections that have not changed are omitted, and some
new sections are added.

8.1 Progress

We can fully render spheres with diffuse color, reflec-
tion, and refraction. We are able to render a single image
across multiple processes and multiple hosts.

9 Update from initial design

9.1 Diagrams

We have updated the vocabulary in the diagram obj-
diagram.png to reflect an accurate description of the roles
of various processes in the system.

9.2 Progress

We can adequately render spheres with diffuse color, and
load a scene from an external description. We are able to
render frames in independent processes, but cannot yet
render a single image across multiple processes.

9.3 Vocabulary

We have transitioned from the terms “Client” and
“Server” to the terms “Worker” and “Collector.” Worker
processes handle rendering of an arbitrary chunk of the
image, which it then sends to the collector process, which
collects rendered chunks and assembles them into a fin-
ished image.



