
Home Calendar Reference Admin Piazza

Comp 40 Lab 0:
Under the C++

New for Spring 2016. By Mark, Max Bernstein, and Carter.

Transitioning from C++ to C

The purspose of this lab is to help you get comfortable with programming in C rather than C++. To that
end, we will explore some aspects of programming in C. We'll talk more about this in class, but you'll
mostly be picking things up on your own. This lab gets you started. As you proceed, you may consult
with members of the course staff and each other.

If you haven't already, you may want to consult Mark's Whirlwind Tour of C as well as the course C
idioms. (Yes, the tour gives away one of the answers below. You must still understand it!)

Here are some things you may be used to in C++ that are not in C:

There is no bool type built in to C. C uses 0 for false and any other value as true. You can
#include <stdbool.h> and then use the type bool and constants true and false, but you
still need to be aware of this fact. Hanson's code often uses int for logically boolean values, for
example.
There is no built-in string type, and handling string data is much more clumsy in C. For string
data, C uses arrays of characters. These arrays do not know how long they are, unlike C++
strings, but like regular arrays. A common way to handle regular strings is to use an array of
characters (bytes), and the last character of the string is the special NUL character (written '\0'
whose value is zero.). This is not the same as a NULL pointer, and confusing the two can lead to
strange problems. String constants (written between double quotes) are represented this way.
For example, the string "foo" represents a sequence of four characters: 'f', 'o', 'o', '\0'. If
you write a string constant, the terminating '\0' is inserted for you by the compiler. But when
you manipulate strings, you need to be aware of its existence.

Since strings are arrays, they are passed around using a pointer to the first character in the
sequence, and their type is pointer-to-character (char *a_string;).

NUL-terminated strings have a wide variety of library functions that work on them.
C++ I/O streams aren't in C. You cannot use >> for program output or << for program input. For
printing, you will often use formatted output using the functions printf and fprintf. You'll see
examples in the links given above, and you can also use man and tutorials on the web. To use
the standard Input/Output library, including printf you must #include <stdio.h>

Getting set up

You will need some files. To make a directory for this lab with the necessary files:

http://www.cs.tufts.edu/comp/40/
http://www.cs.tufts.edu/comp/40/cal
http://www.cs.tufts.edu/comp/40/reference/index
http://www.cs.tufts.edu/comp/40/admin
https://piazza.com/tufts/spring2016/comp40/home
http://www.cs.tufts.edu/comp/40/reference/c-intro/c-intro
http://www.cs.tufts.edu/comp/40/idioms.html

git clone /comp/40/git/under-the-c++

Problem 1: Command-line Arguments (argc and argv)

This program is very simple in the end, but you'll have to figure out command line arguments as well
as some details about C strings.

main() takes arguments:

int main(int argc, char *argv[])

where argc is the number of arguments specified on the command line that invoked the program, and
argv is an array (a vector) of C (i.e., NUL-terminated) strings, one for each input argument. argv[0] is
the name of the program being invoked, and argv[1] up to argv[argc - 1] are the rest. C also
guarantees that argv[argc] is the NULL pointer:

argv is an array whose elements are pointers to characters (char *).

Your task: Using this information, write a C program in the file print_args.c so that the program prints
out all command line arguments in order (excluding the command name). For example, running
./print_args hello world will print hello world.

Problem 2: Exit Codes

In C++ programs, nearly all main functions end with the line return 0;. This is because, when your
program ends, it exits and leaves behind an integer value that can be interpreted by whomever ran the
program (e.g., the shell or the command line interpreter). 0 is typically interpreted to mean that the
program completed execution successfully (think “no problem”), while non-zero values are interpreted
as failures. Different programs have different conventions for exit codes, especially with regard to non-
zero values. (The man pages will often say how to interpret such codes. Try man grep and scroll down
to the section called Exit Codes.) To make things clearer, in Comp 40 we ask that you use the macros
EXIT_SUCCESS and EXIT_FAILURE. Unless otherwise specified, any program that ends due to error
should return or exit with EXIT_FAILURE, and any program that executes successfully ends with
EXIT_SUCCESS.

You must #include <stdlib.h> to get these macro definitions.

Note that this convention is for programs in the shell, not within C code. In C, 0 is typically interpreted
as false, and non-zero as true, so that code enclosed by if (0) { ... } will never execute, while
code enclosed by if (1) { ... } always will.

With this in mind, write a program called check_args so that, whenever it is called with an even
number of command line arguments (not counting the program name), it exits with EXIT_SUCCESS, and
whenever it is called with an odd number (again, not counting the program name), it exits with

EXIT_FAILURE.

How do you know whether your program works? Try this:

bash-3.2$./check_args a
bash-3.2$ echo $?
1
bash-3.2$./check_args a b
bash-3.2$ echo $?
0
bash-3.2$

In the shell, $? means the exit code of the last program I ran.

Problem 3: Parsing Arguments

The next two problems use the same application program but a different implementation of one
module. In both cases, your application will be in args.c, and the application should not change for
the next problem. Essentially, you're writing the client code for the module in this problem and the
implementation code in the next problem.

To build the program for this problem, use make args_prob3, which will make a program named
args_prob3. This will link your application with our solution for str_to_int() (see below).

Your task is to write a program named args that works as follows:

It looks at the command line arguments. Unless and until it gets to a command line argument --
print, it ignores the arguments.
If it finds --print, then the next argument must be an integer numeral, say n. The program then
prints the next n command line arguments, one per line.
It then continues with command line arguments looking for more --print commands.

For example:

bash-3.2$./args a b --print 2 c d e --print 1 f g
c
d
f
bash-3.2$./args a b --print 2 c d e --print 0 f g
c
d
bash-3.2$

If --print is not followed by a valid integer numeral or if the number specified would be too large (go
beyond the last argument), the program must print Invalid on stderr and exit with EXIT_FAILURE. If
it succeeds, it should exit with a success indication.

To do this problem, you will have to use

fprintf() to print to stderr (which is like cerr from C++).
strncmp() to compare strings (command line arguments and --print). This function does not
return a boolean value. See the manual page.
a str_to_int() function to convert a numeral in a string to an integer value. We have provided
you with str_to_int.h and str_to_int_solution.o, which contains our definition of the
function. You will have to link with this .o file. The contract for str_to_int() is in the .h file.

Note that str_to_int() uses a call by reference (CBR) parameter. This is common in C, especially if
a function needs to effectively return more than one thing. In this case, the function returns a status
value that indicates success or failure. In the case of success, it needs to give the result value back to
the caller. One way to do this is with structs, but it's also very common to use a CBR parameter —
such parameters are sometimes called output parameters. Here, the parmater named result is really
an output of the function.

C does not have C++-style reference parameters, so we get call by reference by giving the function a
pointer to the location where we'd like to put the result value. There is no need do dynamically allocate
any memory to call the function.

After you have either succeeded or gotten stuck, draw a stack diagram for this function call. Show your
stack diagram to a member of the course staff and explain it.

Problem 4: Converting from Strings to Integers

In the problem above, we gave you a pre-compiled implementation of str_to_int(). For this
problem, you must implement the version. Write a C module, str_to_int.c that contains a definition
of this function.

To build the program for this problem, use make args_prob4, which will make a program named
args_prob4. This will link your args program with your own solution to str_to_int().

You must NOT use atoi(), and you should never use that function (at least not in code you give to
others or ever expect to use in the future). You should try to figure out why. In particular, it is impossible
to meet the specification in the .h file if you use it!

There are two excellent, standard methods. One uses sscanf() and the other uses strtol. Either is
acceptable.

Problem 5: Call By Reference (again)

Write a program called oldest_person that takes a sequence of one or more name/age pairs on the
command line and prints out the olderst person's name and age. For example:

bash-3.2$./oldest_person Maya 9 Raina 15 Mark 53 January 0
Mark: 53
bash-3.2$

If the command line is malformed in any way, print Invalid on stderr and exit with EXIT_FAILURE.
Negative ages are considered malformed. Your program must define and use the following function:

int oldest_person(char *arglist[], int len, char **oldest_name_p);

The function takes the list of command line arguments excluding the program name and returns the
age of the oldest person and places a pointer to a string giving the oldest person's name in the place
pointed to by oldest_name_p, that is, olest_name_p is a CBR string parameter.

Submitting your work

When you're done, please use provide to submit your work. We'll use a slightly different procedure for
future assignments, but for now:

provide comp40 under-the-c++ *.c *.h Makefile

Mark A. Sheldon (msheldon@cs.tufts.edu)
Last Modified 22 January 2016

mailto:msheldon@cs.tufts.edu

