Maxwell “Lord Vader” Bernstein, Erica Schwartz

Assigned: Thursday, April 7th, 2016
Due: Thursday, April 21st, 2016

COMP 15 Homework 6-Degrees

1. Prelude

You’re a COMP 105 student. You notice that you were your current TA’s COMP 15 TA
back in the day. You wonder, “How many ‘TA-ing degrees of separation’ are there
between me and my friends?” You think back on your data structures training from
COMP 15 and notice that this project is a graph problem.

After begging the department administrators to give you rosters and TAs of every class
for the past seven years, you sit down to write your program...

2. Overview

You will read in files containing TA lists and course rosters going many semesters back,
and store this input in some data structure(s). You will store information about which
students have TAed which other students. (We say student A has TAed student B if
student A was a TA for a given course during the same semester that student B took that
course.)

Then, you will print a prompt, >>, and read one of the following commands from
standard input (cin):
1. 1s
Lists the students found in both of the inputted files. Student names should be
terminated by newlines.
2. lc
Lists the courses found in both of the input files. Course names should be
terminated by newlines.
3. taed <student_name>
Lists the courses that <student_name> has TAed. Course names should be
terminated by newlines.
4. roster <course name>
Lists the roster of the class <course_name>. Student names should be terminated
by newlines.
5. paths <student_a> <student_b>



Print all of the paths between <student_a> and <student_b>. Each path should
be formatted as above. Paths should be terminated by newlines. A path cannot
contain the same student more than once. You may want to use a breadth-first
search to find these paths.

6. shortestpath <student_a> <student_b>
Find the shortest path between <student_a> and <student_b>. If multiple paths
have the shortest length, output any one. Paths should be output in the following
format:

Brad.Pitt +- 15513 -> George.Clooney +- 11F14 -> Tom.Cruise
A typical session with hw6degrees might look like:

>> 1s
Brad.Pitt
George.Clooney
Tom.Cruise

>> 1c

15513

11F14

>>

3. Examples
Part A

Say Erica.Schwartz TAed Vivek.Bilolikar in comp11 in spring 2014 and
Maxwell.Bernstein in comp11 in fall 2014, and then Vivek.Bilolikar TAed
Maxwell.Bernstein in comp15 in fall 2015. This describes the following graph:

11F14 15F15

Your input will come in the form of two input files. In this case, the first file would look
like this (Fig. 1):

Maxwell .Bernstein:11:F14



Maxwell.Bernstein:15:F15
Vivek.Bilolikar:11:S14

And the second file would look like this (Fig. 2):
Erica.Schwartz:11:F14
Erica.Schwartz:11:514
Vivek.Bilolikar:15:F15

You will read in and store this information, and then wait for input from stdin.

When the user enters:

1s

They are asking for a list of students, and you should print:
Erica.Schwartz

Maxwell.Bernstein

Vivek.Bilolikar

When the user enters:

lc

They are asking for a list of courses, and you should print:
11F14

11514

15F15

When the user enters:

taed Vivek.Bilolikar

They are asking for a list of courses that Vivek.Bilolikar has TAed, and you should print:

15F15

When the user enters:



roster 11F14
They are asking for the roster of comp11 in fall 2014 and you should print:

Maxwell.Bernstein

When a user enters:
paths Erica.Schwartz Maxwell.Bernstein

They are asking for paths from Erica.Schwartz to Maxwell.Bernstein, and you should
print:

Erica.Schwartz +- 11F14 -> Maxwell.Bernstein
Erica.Schwartz +- 11514 -> Vivek.Bilolikar +- 15F15 ->
Maxwell.Bernstein

When the user enters:
shortestpath Vivek.Bilolikar Maxwell.Bernstein

They are asking for the shortest path from Vivek.Bilolikar to Maxwell.Bernstein, and you
should print:

Vivek.Bilolikar +- 15F15 -> Maxwell.Bernstein

Part B

Now, consider the following graph:
In this case, the first file would
look like this:
George.Clooney:15:513
Jennifer.Lawrence:15:F15
Kevin.Bacon:15:F15
Meryl.Streep:40:514
Tom.Cruise:11:F14
Tom.Cruise:160:S16
Tom.Cruise:105:S16

And the second file would look



like this:

Brad.Pitt:15:513

George.Clooney:11:F14

George.Clooney:40:5S14

Jennifer.Lawrence:160:S16

Kevin.Bacon:105:516

Meryl.Streep:15:F15

When the user enters:

paths Brad.Pitt Tom.Cruise

You should print:

Brad.Pitt +- 15S13 -> George.Clooney +- 11F14 -> Tom.Cruise

Brad.Pitt +- 15S13 -> George.Clooney +- 40S14 -> Meryl.Streep +- 15F15
-> Jennifer.Lawrence +- 160S16 -> Tom.Cruise

Brad.Pitt +- 15S13 -> George.Clooney +- 40S14 -> Meryl.Streep +- 15F15
-> Kevin.Bacon +- 105516 -> Tom.Cruise

When the user enters:
paths George.Clooney Kevin.Bacon
You should print:

George.Clooney +- 40S14 -> Meryl.Streep +- 15F15 -> Kevin.Bacon

When the user enters:
paths Tom.Cruise Brad.Pitt

Y our program should not produce any output.

When the user enters:
paths Oprah.Winfrey Tom.Cruise
or:

paths George.Clooney Jimmy.Fallon



or:
paths Oprah.Winfrey Jimmy.Fallon
You should print:

Student not found.

. Implementation Specifics
Your program should be runnable by typing:

make
./hwbdegrees students.txt tas.txt

into the terminal, where students. txt is a file in the directory that contains input as
formatted in Fig. 1 and tas. txt is a file in the directory that contains input as formatted
in Fig. 2.

You will store students and courses in data structure(s) of your choice. You are welcome
to use the C++ Standard Template Library for queues, stacks, vectors, and/or sets, but
you must implement all other data structures yourself.

We provide you with a hash function (in hashfunc.cpp and hashfunc.h), should you
choose to implement a hash table. We also provide you with a Makefile that you will
need to edit when you add .h and .cpp files of your own. Copy these files we’re providing
by using the following command:

mkdir hw6; cd hw6
cp /comp/15/files/hw6/* ./

. Implementation Plan

As in HW35, this project will be split into steps. You should be continually testing and
debugging your code along the way. Be careful to keep any possible edge cases in mind.

The stages are defined roughly as follows:

Stage zero

Think. Don’t open an editor right away. What is being asked of you? Review the pictures
and examples above. Do you understand what information is being represented? Can you
find paths by hand? Once you’re there, make a list: what information do you need to



store, 1. e., what is the data? Just brainstorm at first. You can do this with others (you
can’t share code, but you help each other understand the problem). For different kinds of
data, what will you need to do with it? You may start thinking of some classes if some
data elements have lots of state or operations. Make a list of such things. We started this
in class already. Use paper. But you can also start putting things in your ReadMe file,
which you can update as you go.

Stage one
Design your solution — choose your data structures, and outline your classes, your .h
files, and your call tree. Aim to be finished with this stage by Monday, April 11th.

Stage two

Now you can start to implement your data structures, and you can work on the program
skeleton. You can do this in different orders. If you have classes, then you can implement
them and test them with specialized main functions/files.

For the assigned main program, you need to get some basic things going: Read in Student
and TA files. Start by just reading each file in and printing it. Then, when you have some
of your data structures working and you have the basic input working, read in the files
and store them in your data structures. Now you can implement the user interaction
commands 1s and 1lc. At this point, you can be pretty sure you are correctly reading in,
storing, and retrieving the essential data. If you can’t do these things, you can’t debug the
rest of the project, so it’s important to get this done.

Aim to be finished with this stage by Friday, April 15th.

Stage three
Implement taed, roster, paths and shortestpath commands, as well as all other
unfinished aspects of the project.

HW6 will be due on Thursday, April 21st.

Stage four
Turn it in. When you provide your work, do not forget to update the ReadMe and
Makefiles. You will have to add your files to the provide command in the Makefile, too.

Congratulations!



