
DLisp: Automatically distributed computation

Maxwell Bernstein
Tufts University

Matthew Yaspan
Tufts University

Abstract
Many of today’s programs are written sequentially, and
do not take advantage of the computer’s available re-
sources. This is in a large part due to the difficulty of us-
ing any given available threading or parallelization API.
Moreover, these programs often fail to take advantage of
the network to distribute work not just among processes
to take advantage of the scheduler, but use available com-
puting power over the network.

We solve this problem by automatically parallelizing
or distributing computation across cores or even across
a datacenter, then analyze the performance of our dis-
tribution algorithms across several modes. We created
a toy programming language based on lisp and built the
underlying parser, basis, and evaluator in Erlang, which
also handles our network protocols and distribution algo-
rithms.

1 Design

1.1 Language
We began with a Lisp-like language with support for
most forms: fixnum, boolean, symbol, lambda,
funcall, define, val, quote, if, let, let*, eval,
apply, built-in functions, and closures. Then we decided
that users would be less comfortable with a Lisp than a
programming language with a syntax that mirrors exist-
ing programming languages like SML and OCaml, and
changed the syntax. Mergesort, for example, begin as:

(define mergesort (xs)

(if (or (null? xs) (null? (cdr xs)))

xs

(let* ((size (length xs))

(half (/ size 2))

(fsthalf (take half xs))

(sndhalf (drop half xs)))

(merge (mergesort fsthalf)

(mergesort sndhalf)))))

and, after the syntax transformation, ended as:

fun mergesort(xs) =

if null?(xs) or null?(cdr(xs))

then xs

else let* val size = length(xs),

val half = size/2,

val fsthalf = take(half, xs),

val sndhalf = drop(half, xs)

in merge(mergesort(fsthalf),

mergesort(sndhalf))

end;;

Both programs map to the same abstract syntax tree,
which means that we even allow mixing and matching of
styles in the same program, as in:

fun mergesort(xs) =

if [or [null? xs] [null? [cdr xs]]]

then xs

else let* val size = length(xs),

val half = size/2,

val fsthalf = take(half, xs),

val sndhalf = drop(half, xs)

in [merge mergesort(fsthalf)

mergesort(sndhalf)]

end;;

One language property that did not change in the tran-
sition was mutation; DLisp forces variable immutability.
In forms that introduce new environments, such as let
and lambda, shadowing is allowed – but never mutation.
This, as it turns out, is key when attempting to parallelize
computation.

For this reason, map, pmap (parallel map), and dmap

(distributed map) are all built-in special forms.

1



1.2 Network

We use several terms across the span of this writeup:

• Master — Main controller computer from which the
program is run and distributed. Communicates with
several Machines and Workers.

• Machine — Logical or physical computer, which
contains many Agents and Workers.

• WorkPacket — A serializable tuple of the form
{Exp x Env} that is sent to Workers.

• Worker — Process whose sole purpose is to receive
WorkPackets, evaluate them, and send the results
back to the Master.

• SlowWorker — A Worker that has been artificially
slowed down by a constant factor.

• Agent — Process whose sole purpose is to manage
a work queue.

• StealingAgent — Agent that occasionally steals
from other Agents when its worker is moving
quickly.

• RoundRobinMode — Distribution mode that uses a
circular queue to hand out work to Workers in order.

• ByMachineMode — Distribution mode that uses
per-Machine statistics to determine which Worker
should receive a given WorkPacket. Currently, this
has two sub-modes:

– LowLatency — Hand out work to whoever can
respond the fastest to a HealthCheck.

– ByMemory — Hand out work to whoever has
the most computational power (currently mea-
sured by memory pressure) currently avail-
able.

We use normal (non-stealing) Agents to begin with,
then proceed to demonstrate the utility and speed gains
by using StealingAgents. Additionally, we introduce
some SlowWorkers into the Worker pool to demonstrate
that work stealing is an effective means of combating het-
erogeneous computational power.

Additionally, we demonstrate the results of different
distribution modes (enumerated above) and their affects
on end-to-end computation speed.

1.3 Startup Procedure
A Master node is started, and runs on node M. Indepen-
dently, anywhere from 0 to N¿0 Machines are started up
on the same network, with knowledge of the Master. In
this case, we use Erlang nodenames, such as the atom
master@some.ip.address.here, to identify the Mas-
ter.

Each of those Machines will spawn some number of
Agents (see calculate1 and calculate2 functions for
details) based on the capacity of the machine. Currently,
this is based primarily on the number of physical CPU
cores.

Each Machine will then register with the Master, send-
ing over its list of Agents and hardware stats. Machines
can register at any time, but dmap will fail if no machine
has registered with the Master.

2 Distribution Methods

The goal of this project was to allow for a client with
basic coding abilities to vastly improve the performance
of their program which may take up a significant amount
of memory or processing power by distributing it in a
more effective way, either by using Erlang’s ability to
spawn threads and collate responses to take advantage
of the local scheduler, or by distributing the work across
multiple machines over network.

2.1 Local Parallelization
The function pmap in DLisp takes in a function, which
can be anonymous, and a list, as arguments. The parser
decomposes these inputs into a list of WorkPackets con-
sisting an expression and the environment in which the
expression is to be carried out. The expression consists
of an operation and a member of the list on which it is
to be evaluated. For each member of the list, an Erlang
process is spawned in which our eval module is called
on the WorkPacket and then the evaluated result is sent
back to the Master Erlang process. An assemble func-
tion collates all of the results and returns the mapped list.

The advantage of this is that it allows for more optimal
scheduling of processes that are not dependent on one
another. Because this is not a reduce operation, there’s no
data dependency to resolve, and evaluating sequentially
wastes scheduling time for no discernible benefit.

2.2 Distributed Parallelization
The function dmap in DLisp works semantically just like
pmap. However, under the hood, a significant amount is
different. There are three possible methods of distributed
map: RoundRobin, LowLatency, and ByMemory. Each

2



of these is a different load balancing technique that aims
to distribute work in the most efficient way possible.

2.2.1 RoundRobin

In the round robin scheme, all machines that are to
contain Worker processes are initialized with a number
of processes calculate based on the amount of memory
and/or number cores on the respective machines. Each
machine sends their list of Worker processes identifiers
to master, and the Master concatenates the lists into a
queue and randomizes the order of the workers. When
dmap is invoked, The dmap call is decomposed in the
same way as pmap into WorkPackets for each item in the
list. In the case of dmap, however, the WorkPacket is sent
to processes selected from the aforementioned queue. A
process is popped off the queue, sent a WorkPacket, and
requeued at the back, in a RoundRobin scheme. After
all of the work is sent, a list of IDs for each individual
job is returned so that when Workers send results back,
they can be collated and assembled into a mapped list by
Master who sits in receiving mode until all the packets
have been recovered.

2.2.2 LowLatency

In the LowLatency scheme, initialization occurs by Ma-
chine. When Machines register with Master, the Ma-
chine is appended to a list of Machine representations,
each element containing the machine Pid, a queue of
Processes local to the Machine. When dmap is called,
for each iteration through the list given as an argument,
a message is sent to all of the worker Machines, and the
first one to respond is given the WorkPacket. The process
is then repeated until work is entirely allocated.

The goal of this algorithm is to account for disparities
in latency between machines. Although this was not an
issue we experienced, it is plausible that a large organi-
zation with multiple data centers could see this issue if
the pool of machines contained nodes with a significant
enough distance from each other or nodes that are sim-
ply slower. Collation works the same as in RoundRobin,
where the Master waits for each packet to return before
in order returning the collated results.

2.2.3 ByMemory

The By Memory scheme is similar to low latency, except
in this case available memory is prioritized. Much like
in the low latency scheme, initialization occurs by ma-
chine, such that each machine, when it connects, sends
its worker queue and statistics and is represented in a
list of Machines by Master having its own distinct Work-
erQueue. For each element in the list, the correspond-
ing WorkPacket is sent to the machine that presents as

having the most available memory. Machines are polled
through each iteration of this process. ByMemory was
the scheme we tested the least, because it was difficult to
contrive scenarios of heterogeneity between machines in
terms of memory usage in the scope of the time we were
given.

2.3 Work Stealing

A major component in how we distributed work is
through work stealing. The principle of work stealing
is that when certain processes are busy, others can take
on more work. This is a way to augment the load balanc-
ing above in having a failsafe in case a process or pro-
cesses stall on work. In order to accomplish this, when
we create worker processes on a node, these are actually
pairs of Workers and Agents, which were briefly defined
above.

The motivation is that the worker simply waits for
work, performs the work when the work order is received
and returns it, then repeats ad infinitum. The Agent, how-
ever, is the point-of-contact for the worker and anyone
who wishes to send it work. It is called an agent because
it behaves like an agent for an actress, sports player, or
celebrity: the worker does the work, and the agent man-
ages the worker and gives it work from outside sources.
The list of processes inside of Master is a list of agents,
in reality. The Master sends the Agent work, who passes
it along to the worker or builds up a queue of jobs for the
worker to do.

The Agent also negotiates, sending a message to a ran-
dom agent asking to steal work from their queue when
the worker is idle. This setup allows for any inefficien-
cies in the system to be mitigated. If in the low latency
scheme there is one clear favorite machine, its sched-
uler may be bogged down with potentially high-powered
jobs. While it is processing work, an Agent on another
machine can steal from the queues being built up by the
agents on the lowest latency machine. To the Master, this
is irrelevant, but it allows for work to get done as fast as
possible with little central micromanagement.

3 Results

Our findings (located in results.csv) indi-
cates several things about the performance of
map(fac, range(0, 1000));; across the differ-
ent types of map, and across the different configurations
of dmap. An integral part of our testing was artificially
slow Workers.

3



3.1 SlowWorkers
To accomplish this, we added calls to timer:sleep/1.
This doubled the length of time needed to accomplish
any given task. Of course, slowing down every machine
does not help demonstrate anything — we instead made
a probabalistic model at startup time to determine which
fraction of Workers would be ”slow”.

3.2 Test Code
In order to test our distribution method, we wrote some
DLisp code.

fun foldl(f, acc, xs) =

if null?(xs)

then acc

else foldl(f, f(car(xs), acc), cdr(xs));

fun vartimes(...) =

foldl(bintimes, 1, ...);

fun fac(n) =

apply(vartimes, range(1, n+1));

fun range(start, fin) =

if (start > fin) or (start == fin)

then nil

else cons(start, range(start+1, fin));

We figured that dmap(fac, range(0, 1000));;

would be a good test because:

• Not all units of work are the same difficulty.

• Most of those work items are not of insignificant
difficulty, especially given that they are not running
at ”native” Erlang speed.

• There are many units of work, more than fit on any
given Machine in our setup.

3.3 Machine Setup
We used one Master and three Machines, each with 8GB
RAM and 4 cores. They were all on the same network,
even in the same network closet.

Unfortunately, this is not a good test for the LowLa-
tency mode, which is designed to handle systems with
more heterogeneous network setups.

3.4 Findings
1. map is slow.

2. pmap is faster than map if the machine has more than
one core.

3. dmap is faster than map and pmap if you have more
than one machine helping out, and that machine is
at least as powerful as the Master.

4. dmap with Timed/LowLatency mode is the fastest.

5. dmap with WorkStealing enabled is the fastest.

4 Conclusion

The regression results (see regression_results.txt)
give a summary of the partial effects of each of the vari-
ables we incorporated based on the table shown previ-
ously. The intercept value (12476 ms) refers to the value
of the reference observation, in which the type of parallel
map used was Low Latency, there were no slow workers,
and no work stealing. Outside of the intercept, none of
the variables were statistically significant, which is al-
most certain to the lack of observations and high number
of variables and interactions by comparison. With more
time, a more robust dataset could be easily compiled and
results much more definitive.

Generally speaking, RoundRobin clearly had an ad-
vantage over Low Latency. All else equal, it performed
over 4 seconds faster, nearly halving the amount of time.
These improvements were amplified when work stealing
was enabled by about one more second. The changes
were even robust to slower worker processes, with some-
what of a speedup indicated. Its possible that some sleep-
ing processes allowed for the schedulers on machines
to more easily allocate work, but these results are not
strong enough for any conclusions to be made in this re-
gard. Curiously, work-stealing made the Low Latency
algorithm dramatically slower when slow workers were
used. This makes sense, but makes a peculiar juxtaposi-
tion to the miniscule slowdown of Round Robin algo-
rithms, which arguably went faster, and work-stealing
without any slow workers in the low latency algorithm,
which was about the same speed.

4


