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This talk
1. State of Python and C extensions
2. Oof, it’s slow in PyPy
3. Look, we made it faster in PyPy!
4. A rising tide lifts all ships
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The state of things
Python’s continued success: glue C libraries together
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Motivation: Python and C extensions
CPython was not focused on performance for the majority of its life

30+ years... many C extensions

An official C API now exists around PyObject*, types, functions

Think: Java Native Interface (JNI) designed to support multiple JVM 
implementations
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An example C API function
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... some more stuff ...



But there are other Pythons
PyPy: make Python fast

Advanced JIT compiler

Supports Python C extensions
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Motivation: why the C API hurts in PyPy
The CPython C API was designed to wrap CPython and its object model

PyPy has a totally different object model:

● moving GC
● smaller objects with different layouts

Overall not built around PyObject*
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Let’s look at some Python code
import a_c_extension

print(a_c_extension.inc(3))  # => 4
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static PyMethodDef module_methods[] = {
{“inc”, inc, METH_O, "Add one to an int"},
{NULL, NULL, 0, NULL}

};

Python ❤ 
😍

C API 😓 😰



The C module has arg checking wrappers
long inc_impl(long arg) {
  return arg+1;
}

PyObject* inc(PyObject* module, PyObject* obj) {
  long obj_int = PyLong_AsLong(obj);
  if (obj_int == -1 && PyErr_Occurred()) {

return NULL;
  }
  long result = inc_impl(obj_int);
  return PyLong_FromLong(result);
}

Required 
wrapper 

boilerplate
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METH_FASTCALL, for more arguments
PyObject* add(PyObject* m, PyObject** args, Py_ssize_t nargs) {
  if (nargs != 2) return PyErr_Format(PyExc_TypeError, ...);
  if (!PyFloat_CheckExact(args[0])) { ... }
  double left = PyFloat_AsDouble(args[0]);
  if (PyErr_Occurred()) { ... }
  if (!PyFloat_CheckExact(args[1])) { ... }
  double right = PyFloat_AsDouble(args[1]);
  if (PyErr_Occurred()) { ... }
  double result = add_impl(left, right);
  return PyFloat_FromDouble(result);
}

{
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Problem: impedance mismatch
PyPy has probably already traced the 
code and its analyzer knows stuff about 
the function call

But we’re checking all this stuff in 
pre-compiled C code

PyPy can’t remove the checks!

Also, it still has to manufacture 
PyObject* since it cannot look inside 
the C code
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int inc_arg_types[] = {T_C_LONG, -1};

PyPyTypedMethodMetadata inc_sig = {
  .arg_types = inc_arg_types,
  .ret_type = T_C_LONG,
  .underlying_func = inc_impl,
  .ml_name = "inc",
};

// c_long -> c_long with an exposed implementation

static PyMethodDef module_methods[] = {
{inc_sig.ml_name, inc, METH_O|METH_TYPED, "..."},
{NULL, NULL, 0, NULL}

};

Where?? Stuffed behind the existing method metadata!

How to fix: add types!
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How to use the types in the JIT
Two step process:

1. In the optimizer, read C type signature
2. If argument types are known and match, call the underlying function instead

if (is_int(x)) {
  unboxed_result = (*fptr)(unbox(x))
  return box(unboxed_result)
}
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Before!

After!

import a_c_extension

def main(n):
i = 0
while i < n:

    i = a_c_extension.inc(i)
return i

main(1_000_000_000)

Some microbenchmark

That’s a 
big win!
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Consequences for PyPy
Correctness: opt-in

● Only kicks in if you have a bit set in your C extension
● Nobody has this bit set right now

Performance: opt-in

● C extensions that have been annotated get faster (remember: 60-80x*!)
● Nothing else changes

* in microbenchmarks
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Consequences for other Python VMs
Already bites GraalPy, others

There is no impedance mismatch in CPython... yet

Once CPython JIT gets more advanced, they might have unboxed numbers
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Takeaways

Image from Saturday Night Live
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https://dl.acm.org/doi/10.1145/3652588.3663316

● Optimizing across language boundaries is hard
● Adding type information can get you pretty far

○ C function types? Wenowdis
● Surprisingly, doesn’t break things
● Future: Emit from Cython / PyO3

cimport a_c_extension

def main(int n) -> int:
i = 0
while i < n:

    i = a_c_extension.inc(i)
return i
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