
Dr Wenowdis: Specializing dynamic language
C extensions using type information

SOAP 2024, June 25
Maxwell Bernstein
CF Bolz-Tereick

Image from Saturday Night Live 1

This talk
1. State of Python and C extensions
2. Oof, it’s slow in PyPy
3. Look, we made it faster in PyPy!
4. A rising tide lifts all ships

2

The state of things
Python’s continued success: glue C libraries together

3

Motivation: Python and C extensions
CPython was not focused on performance for the majority of its life

30+ years... many C extensions

An official C API now exists around PyObject*, types, functions

Think: Java Native Interface (JNI) designed to support multiple JVM
implementations

4

An example C API function

5

... some more stuff ...

But there are other Pythons
PyPy: make Python fast

Advanced JIT compiler

Supports Python C extensions

6

Motivation: why the C API hurts in PyPy
The CPython C API was designed to wrap CPython and its object model

PyPy has a totally different object model:

● moving GC
● smaller objects with different layouts

Overall not built around PyObject*

7

Let’s look at some Python code
import a_c_extension

print(a_c_extension.inc(3)) # => 4

8

static PyMethodDef module_methods[] = {
{“inc”, inc, METH_O, "Add one to an int"},
{NULL, NULL, 0, NULL}

};

Python ❤
😍

C API 😓 😰

The C module has arg checking wrappers
long inc_impl(long arg) {
 return arg+1;
}

PyObject* inc(PyObject* module, PyObject* obj) {
 long obj_int = PyLong_AsLong(obj);
 if (obj_int == -1 && PyErr_Occurred()) {

return NULL;
 }
 long result = inc_impl(obj_int);
 return PyLong_FromLong(result);
}

Required
wrapper

boilerplate

9

}

METH_FASTCALL, for more arguments
PyObject* add(PyObject* m, PyObject** args, Py_ssize_t nargs) {
 if (nargs != 2) return PyErr_Format(PyExc_TypeError, ...);
 if (!PyFloat_CheckExact(args[0])) { ... }
 double left = PyFloat_AsDouble(args[0]);
 if (PyErr_Occurred()) { ... }
 if (!PyFloat_CheckExact(args[1])) { ... }
 double right = PyFloat_AsDouble(args[1]);
 if (PyErr_Occurred()) { ... }
 double result = add_impl(left, right);
 return PyFloat_FromDouble(result);
}

{

10

Problem: impedance mismatch
PyPy has probably already traced the
code and its analyzer knows stuff about
the function call

But we’re checking all this stuff in
pre-compiled C code

PyPy can’t remove the checks!

Also, it still has to manufacture
PyObject* since it cannot look inside
the C code

11

int inc_arg_types[] = {T_C_LONG, -1};

PyPyTypedMethodMetadata inc_sig = {
 .arg_types = inc_arg_types,
 .ret_type = T_C_LONG,
 .underlying_func = inc_impl,
 .ml_name = "inc",
};

// c_long -> c_long with an exposed implementation

static PyMethodDef module_methods[] = {
{inc_sig.ml_name, inc, METH_O|METH_TYPED, "..."},
{NULL, NULL, 0, NULL}

};

Where?? Stuffed behind the existing method metadata!

How to fix: add types!

12

How to use the types in the JIT
Two step process:

1. In the optimizer, read C type signature
2. If argument types are known and match, call the underlying function instead

if (is_int(x)) {
 unboxed_result = (*fptr)(unbox(x))
 return box(unboxed_result)
}

13

How to use the types in the JIT
Two step process:

1. In the optimizer, read C type signature
2. If argument types are known and match, call the underlying function instead

if (is_int(x)) {
 unboxed_result = (*fptr)(unbox(x))
 return box(unboxed_result)
}

14

How to use the types in the JIT
Two step process:

1. In the optimizer, read C type signature
2. If argument types are known and match, call the underlying function instead

if (is_int(x)) {
 unboxed_result = (*fptr)(unbox(x))
 return box(unboxed_result)
}

15

How to use the types in the JIT
Two step process:

1. In the optimizer, read C type signature
2. If argument types are known and match, call the underlying function instead

if (is_int(x)) {
 unboxed_result = (*fptr)(unbox(x))
 return box(unboxed_result)
}

16

Before!

After!

import a_c_extension

def main(n):
i = 0
while i < n:

 i = a_c_extension.inc(i)
return i

main(1_000_000_000)

Some microbenchmark

That’s a
big win!

17

Consequences for PyPy
Correctness: opt-in

● Only kicks in if you have a bit set in your C extension
● Nobody has this bit set right now

Performance: opt-in

● C extensions that have been annotated get faster (remember: 60-80x*!)
● Nothing else changes

* in microbenchmarks

18

Consequences for other Python VMs
Already bites GraalPy, others

There is no impedance mismatch in CPython... yet

Once CPython JIT gets more advanced, they might have unboxed numbers

19

Takeaways

Image from Saturday Night Live

20

https://dl.acm.org/doi/10.1145/3652588.3663316

● Optimizing across language boundaries is hard
● Adding type information can get you pretty far

○ C function types? Wenowdis
● Surprisingly, doesn’t break things
● Future: Emit from Cython / PyO3

cimport a_c_extension

def main(int n) -> int:
i = 0
while i < n:

 i = a_c_extension.inc(i)
return i

max@bernsteinbear.com

https://dl.acm.org/doi/10.1145/3652588.3663316

