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An introduction to compilers for databases people
MAX BERNSTEIN, Northeastern University, USA

NOTE: This is a draft. I wrote it for a course and I have not reviewed it since. Please do not take it
too seriously or post it publicly. Feel free to email me if you have questions or comments. Thanks.

There is significant overlap in the problem spaces for databases and compilers. Compiler people can learn from
databases people and vice versa. In this article we propose an abbreviated syllabus for an introductory compil-
ers course designed specifically for databases people. We also present some (potentially naïve) suggestions for
optimizing query evaluation engines.

Additional Key Words and Phrases: databases, compilers, programming languages, optimization, SSA

1 INTRODUCTION
Databases people and compilers people don’t talk with one another as much as they should.
Compilers and programming languages folk, engineers and academics alike, manage more data
than they would like to admit. Database herders begrudgingly use a programming language instead
of relational algebra for their incantations over huge and varying tables.
This common programming language and its variants, collectively dubbed Structured Query

Language (SQL), has remained roughly in the same form since its birth in the 1970s. The language is
fine; much as with Excel, people use it with success every day. But the underlying implementations
can sometimes ignore what is considered “common knowledge” to those who regularly work with
compilers.
This proposal outlines a curriculum for an imaginary literature review course targeted at

databases folk. It:
• draws parallels between existing database (DB) and programming language (PL) terms;
• gives a PL perspective of query plans and query optimization;
• and points to further advanced literature that is beyond the scope of an introductory course.

For each optimization technique, we will provide a description, an example of a program that
could benefit from the optimization, and an imaginary optimized version of that same program, if
applicable. Depending on the optimization pass, these examples might be in SQL or some other
programming language.
Note that we will assume that no database indices exist; while they can be used as inputs to

greatly speed up query planning and execution, they are unrelated to the main points we hope to
make here.
We hope that this is illuminating and reduces some of the mystery shrouding programming

languages and compilers. As with many fields, we have invented many terms, languages, and
imbued many existing objects with new meaning.

1.1 Prerequisite knowledge
This paper assumes general programming knowledge and familiarity with common data structures
like trees. It also leans heavily on Python and SQL syntax for example code snippets. It is otherwise
fairly readable for any programmer.
Some of the SQLite bytecode snippets may appear impenetrable, but they are not meant to be

fully read and understood. Glance at them once or twice, confirm that it kind of looks like the
relevant thing is present in the listing, and move on.
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2 Max Bernstein

Fig. 1. Phases of a hypothetical optimizing query compiler. Ovals represent program representations and
rectangles represent stages of compilation and execution. This is similar enough to the structure of major
compiler projects in the wild.

SQL query parse Machine code execute Query resultIR optimize lower

2 COMMON IDEAS WITH DIFFERENT NAMES
Query. We call this a source program or expression. It is an input from the programmer,

designed to be optimized, executed, and maybe also read by other engineers. It will eventually be
transformed into another representation that a machine can directly execute.

Query planner. We call this a compiler. In broad terms, a compiler is a function that receives
a program as an input and produces a program as an output: 𝑓 : 𝑃 → 𝑃 ′. The programs may be
in the same language or they may not be; a source to source optimizer for Python is just as valid
as a TypeScript to JavaScript compiler is just as valid as a C to machine code compiler. There is
often some confusion about this, especially when a compiler’s source and target languages are
languages traditionally written by humans (for example, Python to JavaScript). People may call
this a “transpiler”. But there is no real meaningful distinction.
Figure 1 shows the phases of a hypothetical SQL query compiler. The query gets optimized—

likely first using laws from relational algebra, then using standard PL techniques—then turned into
machine code, at which point is executed.

Not many languages are as tied to a mathematical domain as SQL is to relational algebra1, so they
do not have these two distinct phases of optimization. The PingCAP documentation (JoyinQ and Yi
[27], Oreoxmt [31]) describes them as logical optimization and physical optimization, respectively.
Contemporary query planners tend to lean heavily on the laws from relational algebra, graph

theory, and so on. This is great: it gets the query, as it is written, to the theoretical optimum based
on the state of the art in databases (Group [23]). We can, however, push further using techniques
from the PL world. Query plans might benefit from canonicalizing using PL techniques before and
after query planning.

Query plan. A query planner produces a query plan. This is not quite an executable form; it is
more of a sketch. It is then used in conjunction with the original query to produce an executable
program. The most common form of executable program we have seen in database management
systems (DBMSes) is some kind of abstract syntax tree (AST) or data-flow graph (DFG). More ad-
vanced database management systems further compile this into a bytecode (see Section 3.2) for their
evaluator. These different forms of the same program are all called intermediate representations
and should represent the same abstract idea of the program—be semantically equivalent.

Evaluator. We call this an interpreter: a function that receives a program as an input and
executes it, producing a value as an output: 𝑓 : 𝑃 → 𝑉 .

We call an imaginary function that takes some representation of code and specifies how the code
would be executed an abstract machine. It’s the ideal version of a thing, not the thing itself. If you’re
1At the time of writing, the only other very prominent ones that come to mind are constraint solving languages, regular
expressions, and machine learning (ML)-related languages. Regular expressions, for example, get compiled to a theoretically
optimal nondeterministic finite automaton (NFA)/deterministic finite automaton (DFA) for use in parsing. But this parser
implementation can still benefit from traditional PL techniques.
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An introduction to compilers for databases people 3

reading a book about it, it’s probably an abstract machine. Examples include: the x86 hardware
architecture, the Java virtual machine (Java virtual machine (JVM)), Python, and C.
An interpreter is a real implementation of an abstract machine. An actual program that takes

code in and executes it, often producing data and side-effects. Interpreters can operate on any
of the representations in Section 3 (or others!), but generally they do not work on the raw text.
Examples include: the Intel or AMD processor you likely have inside your computer, the OpenJDK
JVM, CPython, and LLVM.

In database-land, a program is generally a query and the interpretation result—the value—is an
array of rows. There is not a fundamental difference between returning one value and multiple
values; the latter can be abstracted as returning a one value: a collection of others. Loop fusion (or,
related, stream fusion (Bosboom et al. [9], Coutts et al. [18])) is a common enough optimization that,
among other things, can optimize returning multiple values from a function. There are also other
classes of optimizations like storage strategies (Bolz et al. [6]) that make working with collections
faster.

3 INTERMEDIATE REPRESENTATIONS
Compilers tend to have some additional internal intermediate representations to the ones mentioned
above. They are collectively referred to as “intermediate representation (IR)”, which is very helpful.
IRs in general tend to fall into one of two camps: a high-level IR (“HIR”) and a low-level IR (“LIR”)
(Burke et al. [11]). These so-called levels refer to the average semantic meaning imbued into each
instruction in the representation2. Lower levels have less meaning per instruction and generally
more instructions; they are similar to the instructions that hardware can process3. Higher levels
are closer to the source language semantics. Higher-level IRs are generally used for optimizing
program semantics; lower-level IRs are generally used for optimizing the existing program for the
hardware.
The design of a new optimizing compiler for a DBMS should include a domain-specific IR.

Compiling to a generic IR like LLVM (not an initialism) is all fine and good, but it’s a local maximum,
since LLVM was defined for C-like (read: lower level) languages. Encoding the semantics of your
high-level source language into your HIR helps with bigger picture optimizations. In this section,
we give a brief tour of the various common IR designs, their benefits, and their drawbacks.

3.1 Abstract syntax trees (ASTs)
ASTs are the (often fairly direct) in-memory representation of the syntax of the program. The
vertices in these trees represent expressions and the edges represent pointers to other expressions.
Figure 2 shows a hypothetical corresponding AST for a small program.
Interpreting ASTs directly tends to be slow; all of the pointer chasing and memory reads and

name lookups incur high interpreter overhead. For this reason, interpreter authors tend to compile
the ASTs to bytecode (Section 3.2) first, then interpret the bytecode. This frequently reduces
interpreter overhead, even with the compilation stage.

3.2 Bytecode
Bytecode is a compact binary representation of a program suitable for interpretation. Generally
bytecode eschews names and labels for indices and offsets; this strictly numeric form removes some

2This is, we think, common knowledge, and not often expressly discussed in the literature.
3Incidentally, hardware central processing units (CPUs) are another kind of interpreter. There are many concrete CPUs that,
for example, implement the AMD64 abstract machine. And if you look even closer, CPUs are also kind of like compilers. To
learn more, search for “x86 microcode” with your favorite search engine.
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Fig. 2. An example AST for print(3+4). There is an argument list because in Python, print can have any
number of arguments. In this case, there is only one, and it is an expression subtree.

Name 'print' Argument list

add

call

3 4

interpreter overhead4. At the core of DBMSes like SQLite is one very hot loop written in C that
reads one bytecode operation at a time and executes it (authors [1]).
These operations are small atomic chunks like LOAD_CONSTANT or BINARY_OR or PROJECT. List-

ing 1 is an example of a program written in stack-based bytecode. It is a very simple, somewhat
contrived program, which pushes two constant numbers onto the stack, adds them together, and
then prints the result.

Listing 1. Imaginary stack-based bytecode for a program that adds two numbers and prints them. This could
have been compiled from the AST in Figure 2. See how the arguments to the function call are recursively
evaluated first, then the call itself. This is visible because they are pushed on the stack first. Compiletion is a
post-order traversal.
program = [PUSH_CONST , 3,

PUSH_CONST , 4,
ADD ,
PRINT]

interpret(program)
# => 7

Writing an interpreter (Listing 2) for the small bytecode language is very simple. The basic form
is a loop that iterates over the program and executes the instructions one at a time.
The important parts here are the instruction pointer (IP)/program counter (PC)—in this case,

ip—and the value stack. Typical interpreters also have control-flow instructions like JUMP_FORWARD
and JUMP_IF_FALSE that change the IP. These are used to implement if-statements, loops, and
other control-flow.

Listing 2. An interpreter for the stack-based bytecode from Listing 1. It loops over instructions, processing
them one at a time. This is structurally very similar to SQLite’s internal bytecode loop.

def interpret(program):
ip = 0
stack = []
while ip < len(program):

instr = program[ip]
ip += 1
if instr == PUSH_CONST:

4Overhead is the time decoding the program and shuffling data around that is not spent actually fetching data or adding it
to the result set. While this is dramatically smaller in bytecode interpreters than in AST interpreters, it still exists. Compiler
and interpreter authors try to shrink overhead as much as possible.
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An introduction to compilers for databases people 5

arg = program[ip]
ip += 1
stack.append(arg)
continue

if instr == ADD:
rhs = stack.pop()
lhs = stack.pop()
result = lhs + rhs
stack.append(result)
continue

if instr == PRINT:
value = stack.pop()
print(value)
continue

Bytecode is usually generated once and then not modified, because modifying it would require
adjusting a bunch of the hard-coded offsets inside the bytecode (jump destinations, etc). Bytecode
can be high-level or low-level, but the lower the level of the average opcode, the more time is spent
inside the interpreter fetching and decoding the low-level instructions—more overhead.

3.3 Control-flow graphs (CFGs)
Here on out, when we refer to “IR”, we will generally mean something different: a CFG modeled
with basic blocks5 that contain instructions. Unlike bytecode, which is linear and has hard-coded
offsets, this kind of IR is very amenable to modification: it uses structs or classes, pointers, and so
on. It is not generally meant to be interpreted directly, but instead optimized and then translated to
some lower-level representation.
Listing 3 shows a small Python function and Listing 4 shows an example CFG that could be

made from the Python code. Note how in Listing 4 every branch is explicit: there is a CondBranch
in bb 0 that goes to either bb 1 or bb 2 depending on the truth value of v3.

Listing 3. A small Python function that changes its behavior depending on its argument’s value. This
demonstrates both control flow and variable reassignment.

def test(x):
x = x * 2
if x:

return True
else:

return False

This lets the compiler reason about basic blocks—jump-free regions of code—as entire units. It
also greatly simplifies compiler reasoning about, for example, non-local jumps. Imagine a language
with a goto construct. Looking at a piece of an AST, it would be hard to tell that it is a jump target
for that goto. But in CFG representation, it is easy: the goto is just another block predecessor. It is
available inside of the data structure that describes the code.
Listing 4. A hypothetical CFG for the Python program in Listing 3. The syntax and semantics of the IR in the
CFG are not so important (it is adapted from the Cinder project (Cinder Team [14])); the important parts are
the flattened expressions and the splitting of the function into components with no internal control-flow.

fun test {
bb 0 {

v0 = LoadArg <0; "x">
v1 = LoadConst <LongExact [2]>
v2 = BinaryOp <Multiply > v0 v1
v0 = Assign v2

5There are other designs, like basic block arguments and sea of nodes (Click and Paleczny [16]), that are structured differently
but are semantically equivalent.
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v3 = IsTruthy v0
CondBranch <1, 2> v3

}

bb 1 (preds 0) {
v4 = LoadConst <Bool[True]>
Return v4

}

bb 2 (preds 0) {
v5 = LoadConst <Bool[False]>
Return v5

}
}

3.4 Static single-assignment form (SSA)
Let’s look once more at the IR in Listing 4. We see that v0 maps logically to x, v2 to x * 2, and ...
hm, v0 refers now to something new: also x * 2. Now any optimization that involves v0 will have
to be context aware and that’s a huge pain.

Compiler authors used to use many kinds of data structures (def-use chains, etc) to represent code
in a way that is amenable to optimization. These days, the field has largely settled on representing
this data directly in the IR in a form known as SSA (Braun et al. [10], Cytron et al. [19], Rosen et al.
[35]).

Consider: what if every variable was only ever defined exactly once? Or, said slightly differently,
what if you could attach names to every expression? Science fiction authors and computer scientists
agree: names have power (Engelbart [21], Le Guin [29]).
If one name only ever describes one expression, then we significantly reduce the amount of

context any given analysis must carry around. We have more precise data dependencies, can do
easier flow typing, etc. Most compiler passes these days are especially written for code in SSA form
for this reason.

So let’s look at the code from Listing 4 again, but this time in SSA. Turn your eyes to Listing 5.

Listing 5. A hypothetical SSA CFG for the Python program in Listing 3 and CFG in Listing 4. Note that we
only have one definition for v0 and the result of the assign now goes to v6.

fun test {
bb 0 {

v0 = LoadArg <0; "x">
v1 = LoadConst <LongExact [2]>
v2 = BinaryOp <Multiply > v0 v1
v6 = Assign v2
v3 = IsTruthy v6
CondBranch <1, 2> v3

}

bb 1 (preds 0) {
v4 = LoadConst <Bool[True]>
Return v4

}

bb 2 (preds 0) {
v5 = LoadConst <Bool[False]>
Return v5

}
}

Since names can only ever be defined once, diamond control-flow graphs (CFGs) get trickier.
Consider: what are you supposed to do if both branches of an if statement assign to a variable?
Let’s look at an example in Listing 6.
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An introduction to compilers for databases people 7

Listing 6. A small Python function that assigns to a variable in two places. SSA must provide a solution for
multiple assignment, and it does: 𝜙 nodes.

def test(cond):
if cond:

x = 3
else:

x = 4
return x

The answer in SSA is a 𝜙 node (phi node). A 𝜙 is a pseudo-instruction that indicates that a value
could be either one of its arguments depending on the control flow path at runtime. The type—the
set of potential values—of the output of a 𝜙 is the union of its arguments.

Let’s take a look at Listing 7 to see what this looks like.

Listing 7. A SSA CFG for the source code in Listing 6. See the 𝜙 node in bb 3 which merges the expressions
v2 and v3.

fun test {
bb 0 {

v0 = LoadArg <0; "cond">
v1 = IsTruthy v0
CondBranch <1, 2> v1

}

bb 1 (preds 0) {
v2 = LoadConst <LongExact [3]>
Branch <3>

}

bb 2 (preds 0) {
v3 = LoadConst <LongExact [4]>
Branch <3>

}

bb 3 (preds 1, 2) {
v4 = Phi v2 v3
Return v4

}

Placing 𝜙s is not always obvious, especially if you want to have the fewest number possible—
minimal SSA. Most compiler passes that produce SSA from some other form of IR try to produce
minimal SSA, but littering the code with 𝜙s is also a totally valid approach. It just might take some
more memory to encode the same program and more time in each optimization pass.

The optimizations described in the rest of this paper assume input in SSA form.

4 COMMON OPTIMIZATIONS
Right. Let’s finally get down to brass tacks. You’ve finally dragged your SQL query through six
different IRs all the way to SSA form (losing a lot of hair in the process), and you are at long last
ready to optimize the heck out of it. This section presents the high-level ideas behind several
compiler passes and how they work together to optimize your code.

4.1 Common subexpression elimination (CSE)
It’s not always possible or even very readable to make sure that every calculation is only executed
as many times as it needs to be. Sometimes code contains redundant computation, whether it is
through carelessness, incompetence, compiler complexity (macros, for example), or simplification
by other compiler optimizations.

Prin. scalable data mgmt., Vol. 1, No. 1, Article . Publication date: April 2023.
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Keeping those computations around would slow the program down, so compilers have a pass
called CSE. CSE, also known as value numbering6, identifies semantically equivalent expressions
and caches them in local variables.

A very simple example from Maziarz et al. [30] is (a + (v+7)) * (v+7). CSE should be able to
hoist v+7 into its own variable and rewrite the expression to something like let x = v+7 in (a
+ x) * x.

We can also look at an example in databases. We have an example table, Table 1. Someone might
reasonably write a query to find the maximum value in the table by writing select max(value)
from numbers;.

Table 1. A table numbers containing a large amount of real numbers. The content isn’t important; it’s just
expensive to query.

value
1110.1
10.1
23.113231
...

The normal plan for this query is to search linearly over the table to find the maximum.
sqlite> explain query plan select max(value) from numbers;
QUERY PLAN
`--SEARCH numbers
sqlite>

But what happens if we try to retrieve this maximum value twice in the same query? This SQL
query gets the maximum value twice and then adds it to itself:
select x+y
from (select max(value) x from numbers) a,

(select max(value) y from numbers) b;

One might naïvely assume that because max is a built-in function, the SQL optimizer would
perform some kind of CSE, but this is not the case:
sqlite> explain query plan select x+y
from (select max(value) x from numbers) a,

(select max(value) y from numbers) b;
QUERY PLAN
|--MATERIALIZE a
| `--SEARCH numbers
|--MATERIALIZE b
| `--SEARCH numbers
|--SCAN a
`--SCAN b
sqlite>

The SQLite query plan for this query is to search the table numbers twice: once for each subquery.
And if you inspect the bytecodewith EXPLAIN (drop the “QUERY PLAN”), youwill see that confirmed
with two separate loops over numbers.
6This is a more extreme form of SSA, if you think about it. One where each subexpression has one unique name.
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An introduction to compilers for databases people 9

Fig. 3. A plot of execution time in PostgreSQL as a function of number of identical common subexpressions
in a SQL query over a large table of numbers. The time increases linearly with the number of subexpressions.

The same is true for PostgreSQL (Figure 3), where we have plotted execution time as a function
of number of common subexpressions (note, not number of rows in the table).
This kind of optimization is table stakes for “normal” compilers for functional programming

languages: programmers expect the SQL query to be rewritten into something using WITH, as in
Listing 8.

Listing 8. Software engineers are used to compilers transforming their code to do “the obvious thing” and
hoist identical subexpressions into a variable that can be re-used. Here, the WITH creates a new temporary
table maximum to hold the result of the (potentially expensive) maximum value lookup.

with maximum(x) as (select max(value) from numbers)
select x+x from maximum;

See how the subquery will only be executed once, and then its result used twice in the subsequent
select.

CSE must not be too eager to merge subexpressions that look identical. For example, two very
simple textually identical expressions might yield different results:
a = 1
b = a + 2
a = 7
c = a + 2

Folding a and c into the same expression is wrong because a no longer means the same thing
due to the re-definition. This is one advantage of IR representations like SSA.

Another confounding factor is expressions that might have side effects. For example, the print
function has an I/O side effect:
print("hello")
print("hello")

Folding those two would change the externally visible behavior of the program, so CSE must
take into account effects.
Even though CSE has some complications, we were not sure why SQLite did not include CSE.

We looked into the matter and found a mailing list answer. Dr. Richard Hipp, creator of SQLite,
notes (Hipp [24]):
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Our belief is that CSE would be not worth the extra memory, CPU, and code space
required to implement it since CSE simply does not come up that often in SQL
statements. If, in the future, we find that people begin coding more complex SQL
statements which will more often benefit from CSE, then we might revisit this
decision.

This is completely fair, and this section does not argue that SQLite should include CSE, merely
that it could.
However, Hipp’s argument does not generalize to other kinds of more complex program op-

timization. Consider the following very common case: a web server that executes more or less
the same queries on each page load. The only difference between the queries might be part of
the WHERE clause (SELECT * FROM users WHERE users.name == "Wolfgang";). The rest of the
query could be optimized once, stored, and re-used. This treats queries a little more like functions
with parameters, and less like whole expressions.

4.2 Loop-invariant code motion (LICM)
LICM is the compilers term for the database world’s selection pushing. Our technique is a little
bit more general, though: it tries to hoist any computation that can be done outside a loop to
immediately before the loop.

It’s tricky to come up with an example that does not look contrived, because software engineers
are trained to avoid this kind of redundant computation manually. A common example, though, is
computing the length of an unchanging data structure in the loop condition.
In Listing 9, we see a Python function that adds up the decimal values of each character in

a string. It iterates over the string using an integer index i until i reaches the string length,
len(some_string).

Listing 9. A function, sum_chars that adds up the decimal values of every character in a string. Some of the
computation is redundant and can be automatically fixed.

def sum_chars(some_string):
result = 0
while i < len(some_string):

result += ord(some_string[i])
i += 1

return result

It may not be clear, but with every iteration of the loop, the expression i < len(some_string)
gets evaluated, which calls len, which calls a method on the str class, and so on. If you inspect
the loop manually, it’s clear that none of this is necessary: some_string is never modified in the
loop7. The length should be calculated once, and not again.

Remark Did you notice that the same problem happens in the source code for the bytecode interpreter in
Listing 2? The interpreter code itself could benefit from LICM!

LICM can detect this and move the length calculation before the loop. It normally works on IRs,
but the resulting optimized function might look something like Listing 10.

Listing 10. An optimized version of Listing 9 that does not compute the length of the string with every
iteration of the loop. It is only computed once, before the loop begins.

def sum_chars(some_string):
result = 0

7Incidentally, string objects are immutable in Python, so the length will never change. What could happen, though, is that
someone might redefine the local variable to point to some other object. If you are also going to nitpick about Python
semantics, yes, the variable some_string could technically be any type and therefore the length function could have a side
effect. But we’re going to assume that it is a string for the purposes of this demonstration.
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string_length = len(some_string)
while i < string_length:

result += ord(some_string[i])
i += 1

return result

Note that the comparison still needs to happen with every loop iteration, because i changes over
time.

A more relatable SQL-esque example is left as an exercise for the reader. What could be optimized
in this rendering of the conceptual evaluation order (Listing 11)?

Listing 11. A Python-syntax function that joins two relations. Something about it can be optimized using
LICM.

def filter_join(A, B):
result = []
for a in A:

for b in B:
if a < 10 and b < 20:

result.append ((a, b))
return result

To learn more, see Jing et al. [26], an excellent blog post from CS 6120, the Cornell compilers
course blog.

4.3 Constant propagation
Let’s look at a couple of SQL snippets and the bytecode that SQLite produces for the query. For
this section, we will use the Chinook database (Unknown [41]), which primarily contains metadata
about music.
In Listing 12, we have a SQL query that iterates over the albums table and collects the results.

We have used explain to make SQLite produce its internal bytecode representation of the query
for us.
In this bytecode, we can see that we will open the table, loop over it, and then halt. Pretty

straightforward and expected.

Listing 12. The SQLite bytecode compiler has compiled the query into a simple loop over the albums table.
This is expected, and the optimal solution.
sqlite > explain select * from albums;
addr opcode p1 p2 p3 p4 p5 comment
---- ------------- ---- ---- ---- ------------- -- -------------
0 Init 0 9 0 0 Start at 9
1 OpenRead 0 2 0 3 0 root=2 iDb=0; albums
2 Rewind 0 8 0 0
3 Rowid 0 1 0 0 r[1]= rowid
4 Column 0 1 2 0 r[2]= albums.Title
5 Column 0 2 3 0 r[3]= albums.ArtistId
6 ResultRow 1 3 0 0 output=r[1..3]
7 Next 0 3 0 1
8 Halt 0 0 0 0
9 Transaction 0 0 35 0 1 usesStmtJournal =0
10 Goto 0 1 0 0
sqlite >

Let us compare to Listing 13, where we have a SQLite query that collects the results, filtering on
an always false condition. In this case, the optimizer has (correctly) detected that this query will
never return anything, and injected a Goto opcode (addr 1) to finish early.

Listing 13. The SQLite bytecode compiler has injected a Goto to skip the loop because the filtering condition
is always false (0). This is expected, and nearly optimal.
sqlite > explain select * from albums where 0;
addr opcode p1 p2 p3 p4 p5 comment
---- ------------- ---- ---- ---- ------------- -- -------------
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0 Init 0 10 0 0 Start at 10
1 Goto 0 9 0 0
2 OpenRead 0 2 0 3 0 root=2 iDb=0; albums
3 Rewind 0 9 0 0
4 Rowid 0 1 0 0 r[1]= rowid
5 Column 0 1 2 0 r[2]= albums.Title
6 Column 0 2 3 0 r[3]= albums.ArtistId
7 ResultRow 1 3 0 0 output=r[1..3]
8 Next 0 4 0 1
9 Halt 0 0 0 0
10 Transaction 0 0 35 0 1 usesStmtJournal =0
11 Goto 0 1 0 0
sqlite >

There is apparently no dead code elimination (DCE) pass, since the rest of the loop body is left
around, but that’s not very important here. The important thing is that the flow of control will
always short-circuit the loop.
Let’s push the complexity a little further. In Listing 14, we have a query, except that this time,

the filtering condition is 0 != 0, not just the literal 0. Inside the bytecode, we no longer get a Goto.
Instead, we have an Eq that will check once at run-time if the condition is true, and if so, skip the
loop.

Listing 14. The SQLite bytecode compiler has injected a check to short-circuit the loop if at runtime, zero is
not equal to zero (addr 1: Eq). For some reason unknown to the authors, the optimizer can’t eliminate that
check at compile time.
sqlite > explain select * from albums where 0!=0;
addr opcode p1 p2 p3 p4 p5 comment
---- ------------- ---- ---- ---- ------------- -- -------------
0 Init 0 10 0 0 Start at 10
1 Eq 1 9 1 80 if r[1]==r[1] goto 9
2 OpenRead 0 2 0 3 0 root=2 iDb=0; albums
3 Rewind 0 9 0 0
4 Rowid 0 2 0 0 r[2]= rowid
5 Column 0 1 3 0 r[3]= albums.Title
6 Column 0 2 4 0 r[4]= albums.ArtistId
7 ResultRow 2 3 0 0 output=r[2..4]
8 Next 0 4 0 1
9 Halt 0 0 0 0
10 Transaction 0 0 35 0 1 usesStmtJournal =0
11 Integer 0 1 0 0 r[1]=0
12 Goto 0 1 0 0
sqlite >

This is starting to look a little bit like LICM, actually, since SQLite was smart enough to hoist a
condition that does not depend on any one row outside of the loop.
We can confirm that sqlite is just not doing constant folding or propagation by isolating the

0!=0 (Listing 15).

Listing 15. The SQLite optimizer does not constant fold, apparently. See the Ne instruction that compares the
two values at runtime.
sqlite > explain select 0 != 0;
addr opcode p1 p2 p3 p4 p5 comment
---- ------------- ---- ---- ---- ------------- -- -------------
0 Init 0 6 0 0 Start at 6
1 Integer 1 1 0 0 r[1]=1
2 Ne 2 4 2 64 if r[2]!=r[2] goto 4
3 ZeroOrNull 2 1 2 0 r[1] = 0 OR NULL
4 ResultRow 1 1 0 0 output=r[1]
5 Halt 0 0 0 0
6 Integer 0 2 0 0 r[2]=0
7 Goto 0 1 0 0
sqlite >

Constant propagation (more precisely, constant folding) would be able to turn that Eq/Ne into a
Goto, making the queries in Listing 14 and Listing 13 produce equivalent bytecode.
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For further reading, check out specific constant propagation algorithms, like Sparse Conditional
Constant Propagation (Wegman and Zadeck [43]) and Cliff Click’s PhD thesis (Click and Cooper
[15]). These generally require monotone analyses with fixpoints and data structures like lattices.

4.4 Inlining
Inlining has been described as “one of the most important compiler optimizations”. It is the process
of copying the body of a procedure into the body of that procedure’s caller. This has two main
advantages:

• Reducing function call overhead
• Expanding the scope of the optimizer

While function calls can be expensive—and therefore good to eliminate—the latter is the bigger
benefit. Expanding the view of the optimizer can yield better results on all other optimizations.

Consider for example Listing 16. Written as-is, the bytecode for the query is a big loop over the
albums table. Even though you as a reader know that clearly select 0 and 0 are equivalent, the
SQLite query optimizer does not. It looks at one query at a time, and the subquery is not in its
metaphorical “field of view” when optimizing the outer query.

If the inner query were to be inlined into the outer query, the optimizer could reason about them
as a unit and identify that select 0 is indeed always equal to 0.

Listing 16. The SQLite optimizer only has visibility into one compilation unit (subquery) at a time. Since it
can’t know anything about what the opaque subquery returns, it must iterate over the albums table. This is a
current limitation to SQLite, not an inherent constraint, and could be improved.
sqlite > explain select * from albums where (select 0)!=0;
addr opcode p1 p2 p3 p4 p5 comment
---- ------------- ---- ---- ---- ------------- -- -------------
0 Init 0 17 0 0 Start at 17
1 OpenRead 0 2 0 3 0 root=2 iDb=0; albums
2 Rewind 0 16 0 0
3 Integer 9 2 0 0 r[2]=9; return address
4 Once 0 9 0 0
... ... ... ... ... ... ...
13 Column 0 2 8 0 r[8]= albums.ArtistId
14 ResultRow 6 3 0 0 output=r[6..8]
15 Next 0 3 0 1
16 Halt 0 0 0 0
17 Transaction 0 0 35 0 1 usesStmtJournal =0
18 Integer 0 5 0 0 r[5]=0
19 Goto 0 1 0 0
sqlite >

While the code in Listing 16may look contrived—hopefully nobodywrites code like this—consider
that this could be an intermediate program in a pipeline of optimizations. Perhaps select 0 is
leftover from an earlier optimization on a query that returned the size of the table. Inlining that
select 0would have significant performance impact on the outer query. An ideal end result would
look similar to Listing 13, but Listing 14 would also be acceptable.
Inlining isn’t all peaches and cream, though. The primary drawback is the main feature: the

compiler copies code. This increases code size, which can be a problem for larger programs.
It is also tricky to decide which function calls to inline; compilers use compile-time (“static”)

and run-time (“dynamic”) information to make decisions about inlining. While optimizers can
generally use some context clues and manual programmer annotations (the inline keyword in
C, for example), it is not obvious what the best heuristic is. Also, inlining the wrong functions
could cause a performance slowdown. Inlining heuristics are an active area of research. We suspect
optimal inlining is similar to a graph contraction problem.

Prin. scalable data mgmt., Vol. 1, No. 1, Article . Publication date: April 2023.



638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Max Bernstein

We also see this in Listing 17 (foreshadowing!), where without inlining, we never would have
been able to elide the allocation. For more reading on inlining in the Cinder just-in-time (JIT)
Python compiler, see Bernstein [2].

4.5 Code/allocation sinking
Allocation sinking (Pall [32]), also known as allocation removal (Bolz et al. [5]), escape analysis
(Blanchet [4], Choi et al. [13], Deutsch [20], Gay and Steensgaard [22], Kotzmann and Mössenböck
[28], Park and Goldberg [33], Vivien and Rinard [42], and more!), and sometimes points-to analysis
(Steensgaard [38]), is the process of moving, changing, or eliminating code that creates and writes
to objects with short lifespans. It has several main benefits:

• Reducing allocations
• Reducing memory traffic
• Helping constant propagation
• Reducing code size

It is one of those optimizations that, like inlining, make everything better. To illustrate, we will
look at a small Python-esque program8. It contains a class and a free function that operates on an
instance of the class.
Listing 17. A small Python program that contains a a Point class, a Euclidean distance function on
that Point class, and somewhat contrived function to calculate a Point’s distance from the origin.
distance_from_origin is a great candidate for optimization.

class Point:
def __init__(self , x, y):

self.x = x
self.y = y

def distance(self , other):
return math.sqrt((self.x-other.x)**2 + (self.y-other.y)**2)

def distance_from_origin(p: Point):
return Point(0, 0).distance(p)

Though it may not look like it, distance_from_origin is actually quite expensive for what it
does. Though it’s not asymptotically a problem, little expenses add up. One might imagine a ray
tracer, for example, has to do similar calculations for every pixel for every frame of an animation.
While math can be slow, the primary expense comes from allocation and memory traffic. It is

important to note that unlike languages like C and C++, where creating an instance of a class
can happen on the stack or the heap, managed languages such as Python and Java only have
heap-allocated objects.

This means that not only is the creation of the origin point (Point(0,0)) a heap allocation, but
so is every immediate integral or floating point value in the distance computation.
While these objects will not end up contributing to the so-called “high watermark” memory

usage (they do not live long enough), heap allocations and memory traffic are still expensive.
Implementors of the JVM, LuaJIT, and PyPy runtimes have worked for years to invent and

implement algorithms to reduce as much allocation as possible. The mechanics can be slightly
complicated, so we will not discuss them here, but you can read more in Bolz-Tereick [8]. We will,
however, demonstrate in Listing 18 a step-by-step visualization of the distance_from_origin
function as it is transformed by a hypothetical compiler with an allocation removal pass.

Listing 18. The definition of distance_from_origin is transformed over time bymultiple sequential compiler
passes. Each is described in a comment above the function definition.

8We’re not expressly trying to stick to full Python semantics, just close enough.
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# The original function
def distance_from_origin(p: Point):

return Point(0, 0).distance(p)

# Inline the construction of Point
def distance_from_origin(p: Point):

v0 = Alloc <Point >
v0.x = 0
v0.y = 0
v1 = v0.distance(p)
return v1

# Inline the definition of Point.distance
def distance_from_origin(p: Point):

v0 = Alloc <Point >
v0.x = 0
v0.y = 0
v1 = math.sqrt((v0.x-p.x)**2 + (v0.y-p.y)**2)
return v1

# Forward the stores to and loads from the origin Point
def distance_from_origin(p: Point):

v0 = Alloc <Point >
v0.x = 0
v0.y = 0
# Notice that v0.x and v0.y have been transformed into 0.
v1 = math.sqrt((0-p.x)**2 + (0-p.y)**2)
return v1

The load and store forwarding are an important part of the optimization pass. They help constant
propagation, strength reduction, and reduce (or eliminate) dependencies on the allocated object.
For more complex examples that involve constructing and then destruction collections of objects,
they may even help with flow-based type analysis.

Next, we will see how other optimization passes like DCE can further optimize this function.

4.6 Dead code elimination (DCE)
Allocations are not the only code that should be deleted. In general, any code that need not or will
not be executed should be deleted. This generalization is called DCE.
Dead code is not always visible to the programmer. For example, it might come as the result of

platform specialization (Listing 19), or as the result of some other compiler pass (Listing 18), or
something else entirely.

Listing 19. Low-level code often contains different paths for different operating systems. Some of this can be
completely deleted if the operating system is known at compile-time.

import sys
def root_directory ():

if sys.platform == "linux":
return "/"

elif sys.platform == "windows":
return "C:\\"

else:
raise Exception("Unknown operating system!")

If you were reading the section on allocation sinking closely, you might have noticed that in the
last example snippet, the allocation for v0 was completely unused after it was created. The Point is
not obviously dead from the original Python code as it was written, but compiler transformations
have optimized the IR in the background.
Listing 20 shows the conclusion in the exciting optimization series of this Euclidean geometry

function. Since the allocation and the writes to said allocation are completely unused, they can be
removed.
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Listing 20. With DCE we can also completely eliminate the allocation of the Point and the writes to it, since
it is unused in the rest of the function. This has a first-order performance impact inside this function and
second-order impact in the garbage collector and micro-architectural caches.

# Completely eliminate the allocation of v0, since it is not used
def distance_from_origin(p: Point):

v1 = math.sqrt((0-p.x)**2 + (0-p.y)**2)
return v1

Dead code elimination (DCE) is a cleverer optimization than it first appears. We mentioned that
v0 was “completely unused”, but this is not strictly true. The allocation is actually used—the x and
y attributes get written to. So how does DCE eliminate it?
Well, it’s similar to garbage collection (GC). Yes, that’s right, the compile-time elimination of

code is pretty similar to the run-time deallocation of objects.
The algorithm in Listing 21 starts from the required instructions that build the skeleton of the

function: the terminators of the basic blocks, the phi instructions, and any instruction that might
have a side effect (maybe a function call, or some I/O)—this is equivalent to root finding in GC. Then
it does a graph traversal of all of the instructions needed to provide those skeleton instructions
with operands—this is called marking in GC. Then it deletes the rest—sweeping.

So even though we write to the attributes x and y of v0, none of the allocations are either useful
or needed by a useful instruction. So the whole bunch gets deleted.

Listing 21. A Python-esque sketch of the DCE algorithm. It is adapted from the Cinder JIT for Python (Cinder
Team [14]).

def is_useful(instr):
return instr.is_terminator () or instr.is_phi () or

instr.has_side_effect ()

def eliminate_dead_code(func):
# Find the roots in the graph
worklist: Queue[Instr] = Queue()
for block in func.cfg.blocks:

for instr in block:
if is_useful(instr):

worklist.push(instr)

# Traverse the dependencies of the roots
live_set: Set[Instr] = set()
while not worklist.empty():

live_instr = worklist.pop()
if live_instr in live_set:

continue
live_set.add(live_instr)
for operand in live_instr:

if operand.defining_instr () not in live_set:
worklist.push(operand.defining_instr ())

# Delete the unnecessary code
for block in func.cfg.blocks:

for instr in block:
if instr not in live_set:

instr.remove ()

Like garbage collection (GC), dead code elimination (DCE) can be tricky. Bugs in the is_useful
function might end up removing too much code, or maybe the dataflow dependencies in the graph
traversal track too little. Things like that. But it is a very powerful compiler optimization that can
remove whole subgraphs of your CFG that need not be there.

Fun fact In 2022, Theodoridis et al. [40] wrote a paper about using DCE to find missed opportunities in
compiler optimization.
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5 SUGGESTIONS FOR DATABASE COMPILERS
Many (most, perhaps) databases and query optimizers treat queries as one-off programs to be
executed with the lowest latency possible. For one-off queries, this is absolutely the right model;
reducing end-to-end latency for a single query is the path to analyst happiness. But this is not the
only usage pattern.
There are other ways to use a database that might want databases to spend more time in the

query optimizer before caching the result and executing:
• Long-running batch jobs (such as extract, transform, load (ETL) jobs)
• Applications with high read traffic (such as web applications)
• Applications with limited resources (such as mobile applications or applications on embed-
ded devices)

• Applications with infrequent deploys and static queries (such as enterprise applications)
These kinds of applications might want to either compile queries ahead of time, or at least JIT

them with an optimizing compiler. There are some challenges with this, for which we present
suggested solutions.

How do we indicate to the database that a query should be optimized? Define the query as a stored
procedure. That is a good indication that it will be called often, and also indicates what parts of the
query will vary over time: the parameters.

If stored procedures are not an option, which queries should be optimized? The database can keep
track of what queries (or groups of queries, if the queries are parameterized by some value) are
executed the most. This is a very common feature in state-of-the-art JIT compilers.

What if the query should be optimized differently based on its parameters? This is handled rea-
sonably neatly by both inlining and polymorphic specialization. There is also an active research
interest in lazy basic block versioning (Chevalier-Boisvert and Feeley [12]) for dynamic languages.

What if the compiler speculated wrong when it first optimized the query? Deoptimize and re-
compile it. At some point it may be worth completely bailing out and not compiling the function
anymore so that you have some amount of performance convergence. In this case, we recommend
loudly reporting this to the engineer for inspection.

How do I ensure my complicated compiler is correct? You can write and check formal proofs of
correctness for your compiler passes, but this is extraordinarily time consuming and does not
give you everything. People tend to write loads of tests for compiler IR transformations and also
maintain end-to-end test suites for overall program behavior across all optimization levels and
passes. Extensive test suites can be equivalent to program specifications and be used to compare
implementation for defects. For example, when we were developing the Skybison Python runtime
(Skybison Team [37]), our comprehensive test suite found several bugs in the extremely widely
deployed but less tested reference implementation, CPython.

6 FURTHER READING
There are too many areas of compiler research to list here in this paper. We will list other topics
with extreme brevity here for interested readers.

• Loop fusion and stream optimization (Bosboom et al. [9], Coutts et al. [18]), which can be
handy in reducing or eliminating intermediate results between loops

• E-graphs and equality saturation (Tate et al. [39], Willsey et al. [44]), which help eliminate
pass-ordering problems and allow more flexible constraint-based code generation
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• Partial evaluation, which can be used to specialize any chunk of code for a given value
• Other CFG representations such as regionalized value state dependence graphs (RVSDGs)
(Reissmann et al. [34]), which track more information than normal SSA does in the IR itself

• Abstract interpretation (Cousot and Cousot [17]), which is the general idea of evaluating
code to get some other result than a value (for example: a type, some kind of safety check,
etc)

• Determinacy and counterfactual execution (Schäfer et al. [36]), which can be used to augment
DCE or strength reduce very dynamic language constructs like eval

• Vectorization, which can take advantage of the hardware’s ability to do multiple math
operations at once (Hofer [25])

• Making an Embedded DBMS JIT-friendly (Bolz et al. [7]) is a superb read after learning the
basics from this paper and is a tour of effective SQLite optimization using a JIT compiler

We hope you use this as a springboard for more learning. For more links and writing, check out
our compilation of compilers and programming languages resources (Bernstein [3]).

7 COMPLEXITY
Adding optimization passes to a compiler is not all roses. There are some thorns, too. Many compiler
engineers write and deploy compiler passes without rigorous formal proofs of correctness, and
instead ship new software tests. This is the industry standard. As such, there exist bugs in all
compilers, no matter how well tested they are and how well used they are. Heck, even if they did
write proofs, proofs only go so far.

For example, Alexis King, prominent functional programmer and compiler engineer, recently
tweeted about a SQL optimizer bug in SQLite. We have reproduced the SQL code in the tweet here
in Listing 22.

Listing 22. Two SQL queries that should be equivalent. The first one returns two equal numbers, as expected.
The second one triggers a bug in the optimizer that causes two entirely different numbers to be returned.
sqlite > select value , value from (select random () as value);
-6485496119127326647| -6485496119127326647
sqlite > select value , value from (select random () as value from (select 1));
-3291086315575408646| -3264740897758797789
sqlite >

Not all bugs are correctness bugs, either. Some bugs, such as pass ordering bugs, are silent
because they only result in subpar code generation. Occasionally a compiler pass will have an
implicit dependency on another because it expects to optimize away a certain pattern that another
generates. For example, consider two potential optimizations of calling type(x) (which returns
the type of x, whatever it is, at run-time) in Python.

If the type of x is known at compile time, it is possible to replace the call type(x) with the type
itself (say, list). If it is not known, however, one can still optimize the code by replacing type(x)
with a memory load of the PyObject.ob_type field. Seems simple enough, but sometimes the type
of x may become known somewhere in the middle of the compiler optimization pipeline. If the
compiler has already done the second transformation, we’ve lost some information and can no
longer do the first transformation.
This kind of problem shows there is no total order on compiler passes. It’s tricky business and

there is no well-recognized “right answer”.
Project maintainers must decide what their level of risk tolerance is when introducing additional

complexity into their projects. With every new compiler, especially with JIT native code compilers,
come bugs—some more severe than others.
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High-risk projects like web browsers (which run untrusted code from the internet) have oc-
casionally decided to completely forgo native code generation in their JIT compilers. This has a
performance penalty, but the maintainers have deemed that penalty acceptable compared to the
security risk.

All of this is to say that compilers are not “free money”. Like any other software, they have bugs,
and these bugs can have weird and hidden second-order effects.

REFERENCES
[1] SQLite authors. 2022. The SQLite Bytecode Engine. https://www.sqlite.org/opcode.html.
[2] Max Bernstein. 2022. How the Cinder JIT’s function inliner helps us optimize Instagram. https://engineering.fb.com/

2022/05/02/open-source/cinder-jits-instagram/
[3] Max Bernstein. 2023. Programming languages resources. https://bernsteinbear.com/pl-resources/
[4] Bruno Blanchet. 1998. Escape Analysis: Correctness Proof, Implementation and Experimental Results. In Proceedings

of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Diego, California, USA)
(POPL ’98). Association for Computing Machinery, New York, NY, USA, 25–37. https://doi.org/10.1145/268946.268949

[5] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, Michael Leuschel, Samuele Pedroni, and Armin Rigo. 2011.
Allocation Removal by Partial Evaluation in a Tracing JIT. In Proceedings of the 20th ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation (Austin, Texas, USA) (PEPM ’11). Association for Computing Machinery,
New York, NY, USA, 43–52. https://doi.org/10.1145/1929501.1929508

[6] Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt. 2013. Storage Strategies for Collections in Dynamically
Typed Languages. SIGPLAN Not. 48, 10 (oct 2013), 167–182. https://doi.org/10.1145/2544173.2509531

[7] Carl Friedrich Bolz, Darya Kurilova, and Laurence Tratt. 2015. Making an Embedded DBMS JIT-friendly. CoRR
abs/1512.03207 (2015). arXiv:1512.03207 http://arxiv.org/abs/1512.03207

[8] Carl-Friedrich Bolz-Tereick. 2022. Allocation Removal in the Toy Optimizer. https://www.pypy.org/posts/2022/10/toy-
optimizer-allocation-removal.html

[9] Jeffrey Bosboom, Sumanaruban Rajadurai, Weng-Fai Wong, and Saman Amarasinghe. 2014. StreamJIT: A Commensal
Compiler for High-Performance Stream Programming. In Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages & Applications (Portland, Oregon, USA) (OOPSLA ’14). Association
for Computing Machinery, New York, NY, USA, 177–195. https://doi.org/10.1145/2660193.2660236

[10] Matthias Braun, Sebastian Buchwald, Sebastian Hack, Roland Leißa, Christoph Mallon, and Andreas Zwinkau. 2013.
Simple and Efficient Construction of Static Single Assignment Form. In Proceedings of the 22nd International Conference
on Compiler Construction (Rome, Italy) (CC’13). Springer-Verlag, Berlin, Heidelberg, 102–122. https://doi.org/10.1007/
978-3-642-37051-9_6

[11] Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind, Vivek Sarkar, Mauricio J. Serrano,
V. C. Sreedhar, Harini Srinivasan, and John Whaley. 1999. The Jalapeño Dynamic Optimizing Compiler for Java. In
Proceedings of the ACM 1999 Conference on Java Grande (San Francisco, California, USA) (JAVA ’99). Association for
Computing Machinery, New York, NY, USA, 129–141. https://doi.org/10.1145/304065.304113

[12] Maxime Chevalier-Boisvert and Marc Feeley. 2014. Simple and Effective Type Check Removal through Lazy Basic
Block Versioning. CoRR abs/1411.0352 (2014). arXiv:1411.0352 http://arxiv.org/abs/1411.0352

[13] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and Sam Midkiff. 1999. Escape Analysis for
Java. SIGPLAN Not. 34, 10 (oct 1999), 1–19. https://doi.org/10.1145/320385.320386

[14] Cinder Team. 2020. Cinder. https://github.com/facebookincubator/cinder.
[15] Cliff Click and Keith D. Cooper. 1995. Combining Analyses, Combining Optimizations. ACM Trans. Program. Lang.

Syst. 17, 2 (mar 1995), 181–196. https://doi.org/10.1145/201059.201061
[16] Cliff Click and Michael Paleczny. 1995. A Simple Graph-Based Intermediate Representation. SIGPLAN Not. 30, 3 (mar

1995), 35–49. https://doi.org/10.1145/202530.202534
[17] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of

Programs by Construction or Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (Los Angeles, California) (POPL ’77). Association for Computing Machinery,
New York, NY, USA, 238–252. https://doi.org/10.1145/512950.512973

[18] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. 2007. Stream Fusion: From Lists to Streams to Nothing at All.
SIGPLAN Not. 42, 9 (oct 2007), 315–326. https://doi.org/10.1145/1291220.1291199

[19] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1991. Efficiently Computing
Static Single Assignment Form and the Control Dependence Graph. ACM Trans. Program. Lang. Syst. 13, 4 (oct 1991),
451–490. https://doi.org/10.1145/115372.115320

Prin. scalable data mgmt., Vol. 1, No. 1, Article . Publication date: April 2023.

https://www.sqlite.org/opcode.html
https://engineering.fb.com/2022/05/02/open-source/cinder-jits-instagram/
https://engineering.fb.com/2022/05/02/open-source/cinder-jits-instagram/
https://bernsteinbear.com/pl-resources/
https://doi.org/10.1145/268946.268949
https://doi.org/10.1145/1929501.1929508
https://doi.org/10.1145/2544173.2509531
https://arxiv.org/abs/1512.03207
http://arxiv.org/abs/1512.03207
https://www.pypy.org/posts/2022/10/toy-optimizer-allocation-removal.html
https://www.pypy.org/posts/2022/10/toy-optimizer-allocation-removal.html
https://doi.org/10.1145/2660193.2660236
https://doi.org/10.1007/978-3-642-37051-9_6
https://doi.org/10.1007/978-3-642-37051-9_6
https://doi.org/10.1145/304065.304113
https://arxiv.org/abs/1411.0352
http://arxiv.org/abs/1411.0352
https://doi.org/10.1145/320385.320386
https://github.com/facebookincubator/cinder
https://doi.org/10.1145/201059.201061
https://doi.org/10.1145/202530.202534
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/1291220.1291199
https://doi.org/10.1145/115372.115320


932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Max Bernstein

[20] Alain Deutsch. 1997. On the Complexity of Escape Analysis. In Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Paris, France) (POPL ’97). Association for Computing Machinery,
New York, NY, USA, 358–371. https://doi.org/10.1145/263699.263750

[21] Douglas C. Engelbart. 1990. Knowledge-Domain Interoperability and an Open Hyperdocument System. In Proceedings
of the 1990 ACM Conference on Computer-Supported Cooperative Work (Los Angeles, California, USA) (CSCW ’90).
Association for Computing Machinery, New York, NY, USA, 143–156. https://doi.org/10.1145/99332.99351

[22] David Gay and Bjarne Steensgaard. 2000. Fast Escape Analysis and Stack Allocation for Object-Based Programs. In
Proceedings of the 9th International Conference on Compiler Construction (CC ’00). Springer-Verlag, Berlin, Heidelberg,
82–93.

[23] The PostgreSQL Global Development Group. 1996. PostgreSQL: Documentation: 15: 52.5. Planner/Optimizer. https:
//www.postgresql.org/docs/current/planner-optimizer.html.

[24] Richard Hipp. 2012. Common subexpression optimization of deterministic functions. https://sqlite-users.sqlite.
narkive.com/1pJDsmOS/sqlite-common-subexpression-optimization-of-deterministic-functions#post8

[25] Phil Hofer. 2022. Building a SQL VM in AVX-512 Assembly. https://sneller.io/blog/2023/03/22/sql-vm-in-avx-512/
[26] Yi Jing, Zhijing Li, and Neil Adit. 2019. Loop Invariant Code Motion and Loop Reduction for Bril. https://www.cs.

cornell.edu/courses/cs6120/2019fa/blog/loop-reduction/
[27] JoyinQ and Keke Yi. 2020. SQL Logical Optimization. https://docs.pingcap.com/tidb/stable/sql-logical-optimization
[28] Thomas Kotzmann and Hanspeter Mössenböck. 2005. Escape Analysis in the Context of Dynamic Compilation and

Deoptimization. In Proceedings of the 1st ACM/USENIX International Conference on Virtual Execution Environments
(Chicago, IL, USA) (VEE ’05). Association for Computing Machinery, New York, NY, USA, 111–120. https://doi.org/10.
1145/1064979.1064996

[29] Ursula K. Le Guin. 2012. A Wizard of Earthsea. HarperCollins. https://books.google.com/books?id=hDtjOj5FL8MC
[30] Krzysztof Maziarz, Tom Ellis, Alan Lawrence, Andrew Fitzgibbon, and Simon Peyton Jones. 2021. Hashing modulo

Alpha-Equivalence. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA,
960–973. https://doi.org/10.1145/3453483.3454088

[31] Oreoxmt. 2022. SQL physical optimization. https://docs.pingcap.com/tidb/dev/sql-physical-optimization
[32] Mike Pall. 2012. Allocation sinking in git HEAD. https://www.freelists.org/post/luajit/Allocation-sinking-in-git-HEAD
[33] Young Gil Park and Benjamin Goldberg. 1992. Escape Analysis on Lists. SIGPLAN Not. 27, 7 (jul 1992), 116–127.

https://doi.org/10.1145/143103.143125
[34] Nico Reissmann, Jan Christian Meyer, Helge Bahmann, and Magnus Själander. 2020. RVSDG: An Intermediate

Representation for Optimizing Compilers. ACM Trans. Embed. Comput. Syst. 19, 6, Article 49 (dec 2020), 28 pages.
https://doi.org/10.1145/3391902

[35] B. K. Rosen, M. N.Wegman, and F. K. Zadeck. 1988. Global Value Numbers and Redundant Computations. In Proceedings
of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Diego, California, USA)
(POPL ’88). Association for Computing Machinery, New York, NY, USA, 12–27. https://doi.org/10.1145/73560.73562

[36] Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. 2013. Dynamic Determinacy Analysis. SIGPLAN Not. 48, 6
(jun 2013), 165–174. https://doi.org/10.1145/2499370.2462168

[37] Skybison Team. 2020. Skybison. https://github.com/facebookexperimental/skybison.
[38] Bjarne Steensgaard. 1996. Points-to Analysis in Almost Linear Time. In Proceedings of the 23rd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (St. Petersburg Beach, Florida, USA) (POPL ’96). Association for
Computing Machinery, New York, NY, USA, 32–41. https://doi.org/10.1145/237721.237727

[39] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality Saturation: A New Approach to Optimiza-
tion. SIGPLAN Not. 44, 1 (jan 2009), 264–276. https://doi.org/10.1145/1594834.1480915

[40] Theodoros Theodoridis, Manuel Rigger, and Zhendong Su. 2022. Finding Missed Optimizations through the Lens
of Dead Code Elimination. In Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’22). Association for Computing
Machinery, New York, NY, USA, 697–709. https://doi.org/10.1145/3503222.3507764

[41] Unknown. 2022. SQLite Sample Database. https://www.sqlitetutorial.net/sqlite-sample-database/
[42] Frédéric Vivien and Martin Rinard. 2001. Incrementalized Pointer and Escape Analysis. SIGPLAN Not. 36, 5 (may

2001), 35–46. https://doi.org/10.1145/381694.378804
[43] Mark N. Wegman and F. Kenneth Zadeck. 1991. Constant Propagation with Conditional Branches. ACM Trans.

Program. Lang. Syst. 13, 2 (apr 1991), 181–210. https://doi.org/10.1145/103135.103136
[44] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021.

egg: Fast and Extensible Equality Saturation. Proc. ACM Program. Lang. 5, POPL, Article 23 (Jan. 2021), 29 pages.
https://doi.org/10.1145/3434304

Prin. scalable data mgmt., Vol. 1, No. 1, Article . Publication date: April 2023.

https://doi.org/10.1145/263699.263750
https://doi.org/10.1145/99332.99351
https://www.postgresql.org/docs/current/planner-optimizer.html
https://www.postgresql.org/docs/current/planner-optimizer.html
https://sqlite-users.sqlite.narkive.com/1pJDsmOS/sqlite-common-subexpression-optimization-of-deterministic-functions#post8
https://sqlite-users.sqlite.narkive.com/1pJDsmOS/sqlite-common-subexpression-optimization-of-deterministic-functions#post8
https://sneller.io/blog/2023/03/22/sql-vm-in-avx-512/
https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/loop-reduction/
https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/loop-reduction/
https://docs.pingcap.com/tidb/stable/sql-logical-optimization
https://doi.org/10.1145/1064979.1064996
https://doi.org/10.1145/1064979.1064996
https://books.google.com/books?id=hDtjOj5FL8MC
https://doi.org/10.1145/3453483.3454088
https://docs.pingcap.com/tidb/dev/sql-physical-optimization
https://www.freelists.org/post/luajit/Allocation-sinking-in-git-HEAD
https://doi.org/10.1145/143103.143125
https://doi.org/10.1145/3391902
https://doi.org/10.1145/73560.73562
https://doi.org/10.1145/2499370.2462168
https://github.com/facebookexperimental/skybison
https://doi.org/10.1145/237721.237727
https://doi.org/10.1145/1594834.1480915
https://doi.org/10.1145/3503222.3507764
https://www.sqlitetutorial.net/sqlite-sample-database/
https://doi.org/10.1145/381694.378804
https://doi.org/10.1145/103135.103136
https://doi.org/10.1145/3434304


981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

An introduction to compilers for databases people 21

Received 01 March 2023; revised 20 April 2023; accepted 24 April 2023

Prin. scalable data mgmt., Vol. 1, No. 1, Article . Publication date: April 2023.


	Abstract
	1 Introduction
	1.1 Prerequisite knowledge

	2 Common ideas with different names
	3 Intermediate representations
	3.1 abstract syntax trees (ASTs)
	3.2 Bytecode
	3.3 control-flow graphs (CFGs)
	3.4 static single-assignment form (SSA)

	4 Common optimizations
	4.1 common subexpression elimination (CSE)
	4.2 loop-invariant code motion (LICM)
	4.3 Constant propagation
	4.4 Inlining
	4.5 Code/allocation sinking
	4.6 dead code elimination (DCE)

	5 Suggestions for database compilers
	6 Further reading
	7 Complexity
	References

